Spaces:
Running
Running
File size: 36,667 Bytes
19fe404 e262715 19fe404 e262715 19fe404 e262715 19fe404 e262715 19fe404 e262715 19fe404 e262715 19fe404 e262715 19fe404 e262715 19fe404 e262715 19fe404 e262715 19fe404 e262715 19fe404 e262715 19fe404 e262715 19fe404 e262715 19fe404 e262715 19fe404 e262715 19fe404 e262715 19fe404 e262715 19fe404 e262715 19fe404 e262715 19fe404 e262715 19fe404 e262715 19fe404 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import math
import os
from dataclasses import dataclass
from typing import Any, Dict, Optional, Tuple
import numpy as np
import torch
import torch.nn.functional as F
import torch.nn.init as init
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.attention import BasicTransformerBlock, FeedForward
from diffusers.models.embeddings import (PatchEmbed, PixArtAlphaTextProjection,
TimestepEmbedding, Timesteps)
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNormContinuous
from diffusers.utils import (USE_PEFT_BACKEND, BaseOutput, is_torch_version,
logging)
from diffusers.utils.torch_utils import maybe_allow_in_graph
from einops import rearrange
from torch import nn
from .attention import (SelfAttentionTemporalTransformerBlock,
TemporalTransformerBlock)
from .norm import AdaLayerNormSingle
from .patch import (CasualPatchEmbed3D, Patch1D, PatchEmbed3D, PatchEmbedF3D,
TemporalUpsampler3D, UnPatch1D)
try:
from diffusers.models.embeddings import PixArtAlphaTextProjection
except:
from diffusers.models.embeddings import \
CaptionProjection as PixArtAlphaTextProjection
def zero_module(module):
# Zero out the parameters of a module and return it.
for p in module.parameters():
p.detach().zero_()
return module
class CLIPProjection(nn.Module):
"""
Projects caption embeddings. Also handles dropout for classifier-free guidance.
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
"""
def __init__(self, in_features, hidden_size, num_tokens=120):
super().__init__()
self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True)
self.act_1 = nn.GELU(approximate="tanh")
self.linear_2 = nn.Linear(in_features=hidden_size, out_features=hidden_size, bias=True)
self.linear_2 = zero_module(self.linear_2)
def forward(self, caption):
hidden_states = self.linear_1(caption)
hidden_states = self.act_1(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
class TimePositionalEncoding(nn.Module):
def __init__(
self,
d_model,
dropout = 0.,
max_len = 24
):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
pe = torch.zeros(1, max_len, d_model)
pe[0, :, 0::2] = torch.sin(position * div_term)
pe[0, :, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe)
def forward(self, x):
b, c, f, h, w = x.size()
x = rearrange(x, "b c f h w -> (b h w) f c")
x = x + self.pe[:, :x.size(1)]
x = rearrange(x, "(b h w) f c -> b c f h w", b=b, h=h, w=w)
return self.dropout(x)
@dataclass
class Transformer3DModelOutput(BaseOutput):
"""
The output of [`Transformer2DModel`].
Args:
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
distributions for the unnoised latent pixels.
"""
sample: torch.FloatTensor
class Transformer3DModel(ModelMixin, ConfigMixin):
"""
A 3D Transformer model for image-like data.
Parameters:
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
in_channels (`int`, *optional*):
The number of channels in the input and output (specify if the input is **continuous**).
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
This is fixed during training since it is used to learn a number of position embeddings.
num_vector_embeds (`int`, *optional*):
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
Includes the class for the masked latent pixel.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
num_embeds_ada_norm ( `int`, *optional*):
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
added to the hidden states.
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
attention_bias (`bool`, *optional*):
Configure if the `TransformerBlocks` attention should contain a bias parameter.
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
out_channels: Optional[int] = None,
num_layers: int = 1,
dropout: float = 0.0,
norm_num_groups: int = 32,
cross_attention_dim: Optional[int] = None,
attention_bias: bool = False,
sample_size: Optional[int] = None,
num_vector_embeds: Optional[int] = None,
patch_size: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
use_linear_projection: bool = False,
only_cross_attention: bool = False,
double_self_attention: bool = False,
upcast_attention: bool = False,
norm_type: str = "layer_norm",
norm_elementwise_affine: bool = True,
norm_eps: float = 1e-5,
attention_type: str = "default",
caption_channels: int = None,
# block type
basic_block_type: str = "motionmodule",
# enable_uvit
enable_uvit: bool = False,
# 3d patch params
patch_3d: bool = False,
fake_3d: bool = False,
time_patch_size: Optional[int] = None,
casual_3d: bool = False,
casual_3d_upsampler_index: Optional[list] = None,
# motion module kwargs
motion_module_type = "VanillaGrid",
motion_module_kwargs = None,
motion_module_kwargs_odd = None,
motion_module_kwargs_even = None,
# time position encoding
time_position_encoding_before_transformer = False,
qk_norm = False,
after_norm = False,
):
super().__init__()
self.use_linear_projection = use_linear_projection
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
self.enable_uvit = enable_uvit
inner_dim = num_attention_heads * attention_head_dim
self.basic_block_type = basic_block_type
self.patch_3d = patch_3d
self.fake_3d = fake_3d
self.casual_3d = casual_3d
self.casual_3d_upsampler_index = casual_3d_upsampler_index
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
assert sample_size is not None, "Transformer3DModel over patched input must provide sample_size"
self.height = sample_size
self.width = sample_size
self.patch_size = patch_size
self.time_patch_size = self.patch_size if time_patch_size is None else time_patch_size
interpolation_scale = self.config.sample_size // 64 # => 64 (= 512 pixart) has interpolation scale 1
interpolation_scale = max(interpolation_scale, 1)
if self.casual_3d:
self.pos_embed = CasualPatchEmbed3D(
height=sample_size,
width=sample_size,
patch_size=patch_size,
time_patch_size=self.time_patch_size,
in_channels=in_channels,
embed_dim=inner_dim,
interpolation_scale=interpolation_scale,
)
elif self.patch_3d:
if self.fake_3d:
self.pos_embed = PatchEmbedF3D(
height=sample_size,
width=sample_size,
patch_size=patch_size,
in_channels=in_channels,
embed_dim=inner_dim,
interpolation_scale=interpolation_scale,
)
else:
self.pos_embed = PatchEmbed3D(
height=sample_size,
width=sample_size,
patch_size=patch_size,
time_patch_size=self.time_patch_size,
in_channels=in_channels,
embed_dim=inner_dim,
interpolation_scale=interpolation_scale,
)
else:
self.pos_embed = PatchEmbed(
height=sample_size,
width=sample_size,
patch_size=patch_size,
in_channels=in_channels,
embed_dim=inner_dim,
interpolation_scale=interpolation_scale,
)
# 3. Define transformers blocks
if self.basic_block_type == "motionmodule":
self.transformer_blocks = nn.ModuleList(
[
TemporalTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
attention_bias=attention_bias,
only_cross_attention=only_cross_attention,
double_self_attention=double_self_attention,
upcast_attention=upcast_attention,
norm_type=norm_type,
norm_elementwise_affine=norm_elementwise_affine,
norm_eps=norm_eps,
attention_type=attention_type,
motion_module_type=motion_module_type,
motion_module_kwargs=motion_module_kwargs,
qk_norm=qk_norm,
after_norm=after_norm,
)
for d in range(num_layers)
]
)
elif self.basic_block_type == "global_motionmodule":
self.transformer_blocks = nn.ModuleList(
[
TemporalTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
attention_bias=attention_bias,
only_cross_attention=only_cross_attention,
double_self_attention=double_self_attention,
upcast_attention=upcast_attention,
norm_type=norm_type,
norm_elementwise_affine=norm_elementwise_affine,
norm_eps=norm_eps,
attention_type=attention_type,
motion_module_type=motion_module_type,
motion_module_kwargs=motion_module_kwargs_even if d % 2 == 0 else motion_module_kwargs_odd,
qk_norm=qk_norm,
after_norm=after_norm,
)
for d in range(num_layers)
]
)
elif self.basic_block_type == "kvcompression_motionmodule":
self.transformer_blocks = nn.ModuleList(
[
TemporalTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
attention_bias=attention_bias,
only_cross_attention=only_cross_attention,
double_self_attention=double_self_attention,
upcast_attention=upcast_attention,
norm_type=norm_type,
norm_elementwise_affine=norm_elementwise_affine,
norm_eps=norm_eps,
attention_type=attention_type,
kvcompression=False if d < 14 else True,
motion_module_type=motion_module_type,
motion_module_kwargs=motion_module_kwargs,
qk_norm=qk_norm,
after_norm=after_norm,
)
for d in range(num_layers)
]
)
elif self.basic_block_type == "selfattentiontemporal":
self.transformer_blocks = nn.ModuleList(
[
SelfAttentionTemporalTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
attention_bias=attention_bias,
only_cross_attention=only_cross_attention,
double_self_attention=double_self_attention,
upcast_attention=upcast_attention,
norm_type=norm_type,
norm_elementwise_affine=norm_elementwise_affine,
norm_eps=norm_eps,
attention_type=attention_type,
qk_norm=qk_norm,
after_norm=after_norm,
)
for d in range(num_layers)
]
)
else:
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
attention_bias=attention_bias,
only_cross_attention=only_cross_attention,
double_self_attention=double_self_attention,
upcast_attention=upcast_attention,
norm_type=norm_type,
norm_elementwise_affine=norm_elementwise_affine,
norm_eps=norm_eps,
attention_type=attention_type,
)
for d in range(num_layers)
]
)
if self.casual_3d:
self.unpatch1d = TemporalUpsampler3D()
elif self.patch_3d and self.fake_3d:
self.unpatch1d = UnPatch1D(inner_dim, True)
if self.enable_uvit:
self.long_connect_fc = nn.ModuleList(
[
nn.Linear(inner_dim, inner_dim, True) for d in range(13)
]
)
for index in range(13):
self.long_connect_fc[index] = zero_module(self.long_connect_fc[index])
# 4. Define output layers
self.out_channels = in_channels if out_channels is None else out_channels
if norm_type != "ada_norm_single":
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
if self.patch_3d and not self.fake_3d:
self.proj_out_2 = nn.Linear(inner_dim, self.time_patch_size * patch_size * patch_size * self.out_channels)
else:
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
elif norm_type == "ada_norm_single":
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
if self.patch_3d and not self.fake_3d:
self.proj_out = nn.Linear(inner_dim, self.time_patch_size * patch_size * patch_size * self.out_channels)
else:
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
# 5. PixArt-Alpha blocks.
self.adaln_single = None
self.use_additional_conditions = False
if norm_type == "ada_norm_single":
self.use_additional_conditions = self.config.sample_size == 128
# TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
# additional conditions until we find better name
self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions)
self.caption_projection = None
self.clip_projection = None
if caption_channels is not None:
self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
if in_channels == 12:
self.clip_projection = CLIPProjection(in_features=768, hidden_size=inner_dim * 8)
self.gradient_checkpointing = False
self.time_position_encoding_before_transformer = time_position_encoding_before_transformer
if self.time_position_encoding_before_transformer:
self.t_pos = TimePositionalEncoding(max_len = 4096, d_model = inner_dim)
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
def forward(
self,
hidden_states: torch.Tensor,
inpaint_latents: torch.Tensor = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
clip_encoder_hidden_states: Optional[torch.Tensor] = None,
timestep: Optional[torch.LongTensor] = None,
added_cond_kwargs: Dict[str, torch.Tensor] = None,
class_labels: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
clip_attention_mask: Optional[torch.Tensor] = None,
return_dict: bool = True,
):
"""
The [`Transformer2DModel`] forward method.
Args:
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
Input `hidden_states`.
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
self-attention.
timestep ( `torch.LongTensor`, *optional*):
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
`AdaLayerZeroNorm`.
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
attention_mask ( `torch.Tensor`, *optional*):
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
negative values to the attention scores corresponding to "discard" tokens.
encoder_attention_mask ( `torch.Tensor`, *optional*):
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
* Mask `(batch, sequence_length)` True = keep, False = discard.
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
above. This bias will be added to the cross-attention scores.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
tuple.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer3DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
# expects mask of shape:
# [batch, key_tokens]
# adds singleton query_tokens dimension:
# [batch, 1, key_tokens]
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
if attention_mask is not None and attention_mask.ndim == 2:
# assume that mask is expressed as:
# (1 = keep, 0 = discard)
# convert mask into a bias that can be added to attention scores:
# (keep = +0, discard = -10000.0)
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
if clip_attention_mask is not None:
encoder_attention_mask = torch.cat([encoder_attention_mask, clip_attention_mask], dim=1)
# convert encoder_attention_mask to a bias the same way we do for attention_mask
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
encoder_attention_mask = (1 - encoder_attention_mask.to(encoder_hidden_states.dtype)) * -10000.0
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
if inpaint_latents is not None:
hidden_states = torch.concat([hidden_states, inpaint_latents], 1)
# 1. Input
if self.casual_3d:
video_length, height, width = (hidden_states.shape[-3] - 1) // self.time_patch_size + 1, hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
elif self.patch_3d:
video_length, height, width = hidden_states.shape[-3] // self.time_patch_size, hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
else:
video_length, height, width = hidden_states.shape[-3], hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
hidden_states = rearrange(hidden_states, "b c f h w ->(b f) c h w")
hidden_states = self.pos_embed(hidden_states)
if self.adaln_single is not None:
if self.use_additional_conditions and added_cond_kwargs is None:
raise ValueError(
"`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
)
batch_size = hidden_states.shape[0] // video_length
timestep, embedded_timestep = self.adaln_single(
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
)
hidden_states = rearrange(hidden_states, "(b f) (h w) c -> b c f h w", f=video_length, h=height, w=width)
# hidden_states
# bs, c, f, h, w => b (f h w ) c
if self.time_position_encoding_before_transformer:
hidden_states = self.t_pos(hidden_states)
hidden_states = hidden_states.flatten(2).transpose(1, 2)
# 2. Blocks
if self.caption_projection is not None:
batch_size = hidden_states.shape[0]
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
if clip_encoder_hidden_states is not None and encoder_hidden_states is not None:
batch_size = hidden_states.shape[0]
clip_encoder_hidden_states = self.clip_projection(clip_encoder_hidden_states)
clip_encoder_hidden_states = clip_encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
encoder_hidden_states = torch.cat([encoder_hidden_states, clip_encoder_hidden_states], dim = 1)
skips = []
skip_index = 0
for index, block in enumerate(self.transformer_blocks):
if self.enable_uvit:
if index >= 15:
long_connect = self.long_connect_fc[skip_index](skips.pop())
hidden_states = hidden_states + long_connect
skip_index += 1
if self.casual_3d_upsampler_index is not None and index in self.casual_3d_upsampler_index:
hidden_states = rearrange(hidden_states, "b (f h w) c -> b c f h w", f=video_length, h=height, w=width)
hidden_states = self.unpatch1d(hidden_states)
video_length = (video_length - 1) * 2 + 1
hidden_states = rearrange(hidden_states, "b c f h w -> b (f h w) c", f=video_length, h=height, w=width)
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
args = {
"basic": [],
"motionmodule": [video_length, height, width],
"global_motionmodule": [video_length, height, width],
"selfattentiontemporal": [],
"kvcompression_motionmodule": [video_length, height, width],
}[self.basic_block_type]
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
timestep,
cross_attention_kwargs,
class_labels,
*args,
**ckpt_kwargs,
)
else:
kwargs = {
"basic": {},
"motionmodule": {"num_frames":video_length, "height":height, "width":width},
"global_motionmodule": {"num_frames":video_length, "height":height, "width":width},
"selfattentiontemporal": {},
"kvcompression_motionmodule": {"num_frames":video_length, "height":height, "width":width},
}[self.basic_block_type]
hidden_states = block(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
timestep=timestep,
cross_attention_kwargs=cross_attention_kwargs,
class_labels=class_labels,
**kwargs
)
if self.enable_uvit:
if index < 13:
skips.append(hidden_states)
if self.fake_3d and self.patch_3d:
hidden_states = rearrange(hidden_states, "b (f h w) c -> (b h w) c f", f=video_length, w=width, h=height)
hidden_states = self.unpatch1d(hidden_states)
hidden_states = rearrange(hidden_states, "(b h w) c f -> b (f h w) c", w=width, h=height)
# 3. Output
if self.config.norm_type != "ada_norm_single":
conditioning = self.transformer_blocks[0].norm1.emb(
timestep, class_labels, hidden_dtype=hidden_states.dtype
)
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
hidden_states = self.proj_out_2(hidden_states)
elif self.config.norm_type == "ada_norm_single":
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
hidden_states = self.norm_out(hidden_states)
# Modulation
hidden_states = hidden_states * (1 + scale) + shift
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.squeeze(1)
# unpatchify
if self.adaln_single is None:
height = width = int(hidden_states.shape[1] ** 0.5)
if self.patch_3d:
if self.fake_3d:
hidden_states = hidden_states.reshape(
shape=(-1, video_length * self.patch_size, height, width, self.patch_size, self.patch_size, self.out_channels)
)
hidden_states = torch.einsum("nfhwpqc->ncfhpwq", hidden_states)
else:
hidden_states = hidden_states.reshape(
shape=(-1, video_length, height, width, self.time_patch_size, self.patch_size, self.patch_size, self.out_channels)
)
hidden_states = torch.einsum("nfhwopqc->ncfohpwq", hidden_states)
output = hidden_states.reshape(
shape=(-1, self.out_channels, video_length * self.time_patch_size, height * self.patch_size, width * self.patch_size)
)
else:
hidden_states = hidden_states.reshape(
shape=(-1, video_length, height, width, self.patch_size, self.patch_size, self.out_channels)
)
hidden_states = torch.einsum("nfhwpqc->ncfhpwq", hidden_states)
output = hidden_states.reshape(
shape=(-1, self.out_channels, video_length, height * self.patch_size, width * self.patch_size)
)
if not return_dict:
return (output,)
return Transformer3DModelOutput(sample=output)
@classmethod
def from_pretrained_2d(cls, pretrained_model_path, subfolder=None, patch_size=2, transformer_additional_kwargs={}):
if subfolder is not None:
pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
print(f"loaded 3D transformer's pretrained weights from {pretrained_model_path} ...")
config_file = os.path.join(pretrained_model_path, 'config.json')
if not os.path.isfile(config_file):
raise RuntimeError(f"{config_file} does not exist")
with open(config_file, "r") as f:
config = json.load(f)
from diffusers.utils import WEIGHTS_NAME
model = cls.from_config(config, **transformer_additional_kwargs)
model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
model_file_safetensors = model_file.replace(".bin", ".safetensors")
if os.path.exists(model_file_safetensors):
from safetensors.torch import load_file, safe_open
state_dict = load_file(model_file_safetensors)
else:
if not os.path.isfile(model_file):
raise RuntimeError(f"{model_file} does not exist")
state_dict = torch.load(model_file, map_location="cpu")
if model.state_dict()['pos_embed.proj.weight'].size() != state_dict['pos_embed.proj.weight'].size():
new_shape = model.state_dict()['pos_embed.proj.weight'].size()
if len(new_shape) == 5:
state_dict['pos_embed.proj.weight'] = state_dict['pos_embed.proj.weight'].unsqueeze(2).expand(new_shape).clone()
state_dict['pos_embed.proj.weight'][:, :, :-1] = 0
else:
model.state_dict()['pos_embed.proj.weight'][:, :4, :, :] = state_dict['pos_embed.proj.weight']
model.state_dict()['pos_embed.proj.weight'][:, 4:, :, :] = 0
state_dict['pos_embed.proj.weight'] = model.state_dict()['pos_embed.proj.weight']
if model.state_dict()['proj_out.weight'].size() != state_dict['proj_out.weight'].size():
new_shape = model.state_dict()['proj_out.weight'].size()
state_dict['proj_out.weight'] = torch.tile(state_dict['proj_out.weight'], [patch_size, 1])
if model.state_dict()['proj_out.bias'].size() != state_dict['proj_out.bias'].size():
new_shape = model.state_dict()['proj_out.bias'].size()
state_dict['proj_out.bias'] = torch.tile(state_dict['proj_out.bias'], [patch_size])
tmp_state_dict = {}
for key in state_dict:
if key in model.state_dict().keys() and model.state_dict()[key].size() == state_dict[key].size():
tmp_state_dict[key] = state_dict[key]
else:
print(key, "Size don't match, skip")
state_dict = tmp_state_dict
m, u = model.load_state_dict(state_dict, strict=False)
print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
params = [p.numel() if "attn_temporal." in n else 0 for n, p in model.named_parameters()]
print(f"### Attn temporal Parameters: {sum(params) / 1e6} M")
return model |