Spaces:
Running
Running
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Any, Dict, Optional | |
import diffusers | |
import pkg_resources | |
import torch | |
import torch.nn.functional as F | |
import torch.nn.init as init | |
installed_version = diffusers.__version__ | |
if pkg_resources.parse_version(installed_version) >= pkg_resources.parse_version("0.28.2"): | |
from diffusers.models.attention_processor import (Attention, | |
AttnProcessor2_0, | |
HunyuanAttnProcessor2_0) | |
else: | |
from diffusers.models.attention_processor import Attention, AttnProcessor2_0 | |
from diffusers.models.attention import AdaLayerNorm, FeedForward | |
from diffusers.models.embeddings import SinusoidalPositionalEmbedding | |
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormZero | |
from diffusers.utils import USE_PEFT_BACKEND | |
from diffusers.utils.import_utils import is_xformers_available | |
from diffusers.utils.torch_utils import maybe_allow_in_graph | |
from einops import rearrange, repeat | |
from torch import nn | |
from .motion_module import PositionalEncoding, get_motion_module | |
from .norm import FP32LayerNorm | |
if is_xformers_available(): | |
import xformers | |
import xformers.ops | |
else: | |
xformers = None | |
def zero_module(module): | |
# Zero out the parameters of a module and return it. | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
class GatedSelfAttentionDense(nn.Module): | |
r""" | |
A gated self-attention dense layer that combines visual features and object features. | |
Parameters: | |
query_dim (`int`): The number of channels in the query. | |
context_dim (`int`): The number of channels in the context. | |
n_heads (`int`): The number of heads to use for attention. | |
d_head (`int`): The number of channels in each head. | |
""" | |
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int): | |
super().__init__() | |
# we need a linear projection since we need cat visual feature and obj feature | |
self.linear = nn.Linear(context_dim, query_dim) | |
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head) | |
self.ff = FeedForward(query_dim, activation_fn="geglu") | |
self.norm1 = FP32LayerNorm(query_dim) | |
self.norm2 = FP32LayerNorm(query_dim) | |
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0))) | |
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0))) | |
self.enabled = True | |
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor: | |
if not self.enabled: | |
return x | |
n_visual = x.shape[1] | |
objs = self.linear(objs) | |
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :] | |
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x)) | |
return x | |
class KVCompressionCrossAttention(nn.Module): | |
r""" | |
A cross attention layer. | |
Parameters: | |
query_dim (`int`): The number of channels in the query. | |
cross_attention_dim (`int`, *optional*): | |
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. | |
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. | |
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
bias (`bool`, *optional*, defaults to False): | |
Set to `True` for the query, key, and value linear layers to contain a bias parameter. | |
""" | |
def __init__( | |
self, | |
query_dim: int, | |
cross_attention_dim: Optional[int] = None, | |
heads: int = 8, | |
dim_head: int = 64, | |
dropout: float = 0.0, | |
bias=False, | |
upcast_attention: bool = False, | |
upcast_softmax: bool = False, | |
added_kv_proj_dim: Optional[int] = None, | |
norm_num_groups: Optional[int] = None, | |
): | |
super().__init__() | |
inner_dim = dim_head * heads | |
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim | |
self.upcast_attention = upcast_attention | |
self.upcast_softmax = upcast_softmax | |
self.scale = dim_head**-0.5 | |
self.heads = heads | |
# for slice_size > 0 the attention score computation | |
# is split across the batch axis to save memory | |
# You can set slice_size with `set_attention_slice` | |
self.sliceable_head_dim = heads | |
self._slice_size = None | |
self._use_memory_efficient_attention_xformers = True | |
self.added_kv_proj_dim = added_kv_proj_dim | |
if norm_num_groups is not None: | |
self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True) | |
else: | |
self.group_norm = None | |
self.to_q = nn.Linear(query_dim, inner_dim, bias=bias) | |
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias) | |
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias) | |
if self.added_kv_proj_dim is not None: | |
self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) | |
self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) | |
self.kv_compression = nn.Conv2d( | |
query_dim, | |
query_dim, | |
groups=query_dim, | |
kernel_size=2, | |
stride=2, | |
bias=True | |
) | |
self.kv_compression_norm = FP32LayerNorm(query_dim) | |
init.constant_(self.kv_compression.weight, 1 / 4) | |
if self.kv_compression.bias is not None: | |
init.constant_(self.kv_compression.bias, 0) | |
self.to_out = nn.ModuleList([]) | |
self.to_out.append(nn.Linear(inner_dim, query_dim)) | |
self.to_out.append(nn.Dropout(dropout)) | |
def reshape_heads_to_batch_dim(self, tensor): | |
batch_size, seq_len, dim = tensor.shape | |
head_size = self.heads | |
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) | |
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) | |
return tensor | |
def reshape_batch_dim_to_heads(self, tensor): | |
batch_size, seq_len, dim = tensor.shape | |
head_size = self.heads | |
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) | |
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) | |
return tensor | |
def set_attention_slice(self, slice_size): | |
if slice_size is not None and slice_size > self.sliceable_head_dim: | |
raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.") | |
self._slice_size = slice_size | |
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, num_frames: int = 16, height: int = 32, width: int = 32): | |
batch_size, sequence_length, _ = hidden_states.shape | |
encoder_hidden_states = encoder_hidden_states | |
if self.group_norm is not None: | |
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = self.to_q(hidden_states) | |
dim = query.shape[-1] | |
query = self.reshape_heads_to_batch_dim(query) | |
if self.added_kv_proj_dim is not None: | |
key = self.to_k(hidden_states) | |
value = self.to_v(hidden_states) | |
encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states) | |
encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states) | |
key = rearrange(key, "b (f h w) c -> (b f) c h w", f=num_frames, h=height, w=width) | |
key = self.kv_compression(key) | |
key = rearrange(key, "(b f) c h w -> b (f h w) c", f=num_frames) | |
key = self.kv_compression_norm(key) | |
key = key.to(query.dtype) | |
value = rearrange(value, "b (f h w) c -> (b f) c h w", f=num_frames, h=height, w=width) | |
value = self.kv_compression(value) | |
value = rearrange(value, "(b f) c h w -> b (f h w) c", f=num_frames) | |
value = self.kv_compression_norm(value) | |
value = value.to(query.dtype) | |
key = self.reshape_heads_to_batch_dim(key) | |
value = self.reshape_heads_to_batch_dim(value) | |
encoder_hidden_states_key_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_key_proj) | |
encoder_hidden_states_value_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_value_proj) | |
key = torch.concat([encoder_hidden_states_key_proj, key], dim=1) | |
value = torch.concat([encoder_hidden_states_value_proj, value], dim=1) | |
else: | |
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
key = self.to_k(encoder_hidden_states) | |
value = self.to_v(encoder_hidden_states) | |
key = rearrange(key, "b (f h w) c -> (b f) c h w", f=num_frames, h=height, w=width) | |
key = self.kv_compression(key) | |
key = rearrange(key, "(b f) c h w -> b (f h w) c", f=num_frames) | |
key = self.kv_compression_norm(key) | |
key = key.to(query.dtype) | |
value = rearrange(value, "b (f h w) c -> (b f) c h w", f=num_frames, h=height, w=width) | |
value = self.kv_compression(value) | |
value = rearrange(value, "(b f) c h w -> b (f h w) c", f=num_frames) | |
value = self.kv_compression_norm(value) | |
value = value.to(query.dtype) | |
key = self.reshape_heads_to_batch_dim(key) | |
value = self.reshape_heads_to_batch_dim(value) | |
if attention_mask is not None: | |
if attention_mask.shape[-1] != query.shape[1]: | |
target_length = query.shape[1] | |
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | |
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) | |
# attention, what we cannot get enough of | |
if self._use_memory_efficient_attention_xformers: | |
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) | |
# Some versions of xformers return output in fp32, cast it back to the dtype of the input | |
hidden_states = hidden_states.to(query.dtype) | |
else: | |
if self._slice_size is None or query.shape[0] // self._slice_size == 1: | |
hidden_states = self._attention(query, key, value, attention_mask) | |
else: | |
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) | |
# linear proj | |
hidden_states = self.to_out[0](hidden_states) | |
# dropout | |
hidden_states = self.to_out[1](hidden_states) | |
return hidden_states | |
def _attention(self, query, key, value, attention_mask=None): | |
if self.upcast_attention: | |
query = query.float() | |
key = key.float() | |
attention_scores = torch.baddbmm( | |
torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device), | |
query, | |
key.transpose(-1, -2), | |
beta=0, | |
alpha=self.scale, | |
) | |
if attention_mask is not None: | |
attention_scores = attention_scores + attention_mask | |
if self.upcast_softmax: | |
attention_scores = attention_scores.float() | |
attention_probs = attention_scores.softmax(dim=-1) | |
# cast back to the original dtype | |
attention_probs = attention_probs.to(value.dtype) | |
# compute attention output | |
hidden_states = torch.bmm(attention_probs, value) | |
# reshape hidden_states | |
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
return hidden_states | |
def _sliced_attention(self, query, key, value, sequence_length, dim, attention_mask): | |
batch_size_attention = query.shape[0] | |
hidden_states = torch.zeros( | |
(batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype | |
) | |
slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0] | |
for i in range(hidden_states.shape[0] // slice_size): | |
start_idx = i * slice_size | |
end_idx = (i + 1) * slice_size | |
query_slice = query[start_idx:end_idx] | |
key_slice = key[start_idx:end_idx] | |
if self.upcast_attention: | |
query_slice = query_slice.float() | |
key_slice = key_slice.float() | |
attn_slice = torch.baddbmm( | |
torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query_slice.dtype, device=query.device), | |
query_slice, | |
key_slice.transpose(-1, -2), | |
beta=0, | |
alpha=self.scale, | |
) | |
if attention_mask is not None: | |
attn_slice = attn_slice + attention_mask[start_idx:end_idx] | |
if self.upcast_softmax: | |
attn_slice = attn_slice.float() | |
attn_slice = attn_slice.softmax(dim=-1) | |
# cast back to the original dtype | |
attn_slice = attn_slice.to(value.dtype) | |
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) | |
hidden_states[start_idx:end_idx] = attn_slice | |
# reshape hidden_states | |
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
return hidden_states | |
def _memory_efficient_attention_xformers(self, query, key, value, attention_mask): | |
# TODO attention_mask | |
query = query.contiguous() | |
key = key.contiguous() | |
value = value.contiguous() | |
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask) | |
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
return hidden_states | |
class TemporalTransformerBlock(nn.Module): | |
r""" | |
A Temporal Transformer block. | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
num_embeds_ada_norm (: | |
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. | |
attention_bias (: | |
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. | |
only_cross_attention (`bool`, *optional*): | |
Whether to use only cross-attention layers. In this case two cross attention layers are used. | |
double_self_attention (`bool`, *optional*): | |
Whether to use two self-attention layers. In this case no cross attention layers are used. | |
upcast_attention (`bool`, *optional*): | |
Whether to upcast the attention computation to float32. This is useful for mixed precision training. | |
norm_elementwise_affine (`bool`, *optional*, defaults to `True`): | |
Whether to use learnable elementwise affine parameters for normalization. | |
norm_type (`str`, *optional*, defaults to `"layer_norm"`): | |
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. | |
final_dropout (`bool` *optional*, defaults to False): | |
Whether to apply a final dropout after the last feed-forward layer. | |
attention_type (`str`, *optional*, defaults to `"default"`): | |
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. | |
positional_embeddings (`str`, *optional*, defaults to `None`): | |
The type of positional embeddings to apply to. | |
num_positional_embeddings (`int`, *optional*, defaults to `None`): | |
The maximum number of positional embeddings to apply. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
double_self_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_elementwise_affine: bool = True, | |
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single' | |
norm_eps: float = 1e-5, | |
final_dropout: bool = False, | |
attention_type: str = "default", | |
positional_embeddings: Optional[str] = None, | |
num_positional_embeddings: Optional[int] = None, | |
# kv compression | |
kvcompression: Optional[bool] = False, | |
# motion module kwargs | |
motion_module_type = "VanillaGrid", | |
motion_module_kwargs = None, | |
qk_norm = False, | |
after_norm = False, | |
): | |
super().__init__() | |
self.only_cross_attention = only_cross_attention | |
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" | |
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" | |
self.use_ada_layer_norm_single = norm_type == "ada_norm_single" | |
self.use_layer_norm = norm_type == "layer_norm" | |
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: | |
raise ValueError( | |
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" | |
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." | |
) | |
if positional_embeddings and (num_positional_embeddings is None): | |
raise ValueError( | |
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." | |
) | |
if positional_embeddings == "sinusoidal": | |
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings) | |
else: | |
self.pos_embed = None | |
# Define 3 blocks. Each block has its own normalization layer. | |
# 1. Self-Attn | |
if self.use_ada_layer_norm: | |
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
elif self.use_ada_layer_norm_zero: | |
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) | |
else: | |
self.norm1 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
self.kvcompression = kvcompression | |
if kvcompression: | |
self.attn1 = KVCompressionCrossAttention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
) | |
else: | |
if pkg_resources.parse_version(installed_version) >= pkg_resources.parse_version("0.28.2"): | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
qk_norm="layer_norm" if qk_norm else None, | |
processor=HunyuanAttnProcessor2_0() if qk_norm else AttnProcessor2_0(), | |
) | |
else: | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
) | |
self.attn_temporal = get_motion_module( | |
in_channels = dim, | |
motion_module_type = motion_module_type, | |
motion_module_kwargs = motion_module_kwargs, | |
) | |
# 2. Cross-Attn | |
if cross_attention_dim is not None or double_self_attention: | |
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block. | |
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during | |
# the second cross attention block. | |
self.norm2 = ( | |
AdaLayerNorm(dim, num_embeds_ada_norm) | |
if self.use_ada_layer_norm | |
else FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
) | |
if pkg_resources.parse_version(installed_version) >= pkg_resources.parse_version("0.28.2"): | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim if not double_self_attention else None, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
qk_norm="layer_norm" if qk_norm else None, | |
processor=HunyuanAttnProcessor2_0() if qk_norm else AttnProcessor2_0(), | |
) # is self-attn if encoder_hidden_states is none | |
else: | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim if not double_self_attention else None, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) # is self-attn if encoder_hidden_states is none | |
else: | |
self.norm2 = None | |
self.attn2 = None | |
# 3. Feed-forward | |
if not self.use_ada_layer_norm_single: | |
self.norm3 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout) | |
if after_norm: | |
self.norm4 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
else: | |
self.norm4 = None | |
# 4. Fuser | |
if attention_type == "gated" or attention_type == "gated-text-image": | |
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim) | |
# 5. Scale-shift for PixArt-Alpha. | |
if self.use_ada_layer_norm_single: | |
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = 0 | |
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int): | |
# Sets chunk feed-forward | |
self._chunk_size = chunk_size | |
self._chunk_dim = dim | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
num_frames: int = 16, | |
height: int = 32, | |
width: int = 32, | |
) -> torch.FloatTensor: | |
# Notice that normalization is always applied before the real computation in the following blocks. | |
# 0. Self-Attention | |
batch_size = hidden_states.shape[0] | |
if self.use_ada_layer_norm: | |
norm_hidden_states = self.norm1(hidden_states, timestep) | |
elif self.use_ada_layer_norm_zero: | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
) | |
elif self.use_layer_norm: | |
norm_hidden_states = self.norm1(hidden_states) | |
elif self.use_ada_layer_norm_single: | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) | |
).chunk(6, dim=1) | |
norm_hidden_states = self.norm1(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa | |
norm_hidden_states = norm_hidden_states.squeeze(1) | |
else: | |
raise ValueError("Incorrect norm used") | |
if self.pos_embed is not None: | |
norm_hidden_states = self.pos_embed(norm_hidden_states) | |
# 1. Retrieve lora scale. | |
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | |
# 2. Prepare GLIGEN inputs | |
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} | |
gligen_kwargs = cross_attention_kwargs.pop("gligen", None) | |
norm_hidden_states = rearrange(norm_hidden_states, "b (f d) c -> (b f) d c", f=num_frames) | |
if self.kvcompression: | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
num_frames=1, | |
height=height, | |
width=width, | |
**cross_attention_kwargs, | |
) | |
else: | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
attn_output = rearrange(attn_output, "(b f) d c -> b (f d) c", f=num_frames) | |
if self.use_ada_layer_norm_zero: | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
elif self.use_ada_layer_norm_single: | |
attn_output = gate_msa * attn_output | |
hidden_states = attn_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
# 2.5 GLIGEN Control | |
if gligen_kwargs is not None: | |
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) | |
# 2.75. Temp-Attention | |
if self.attn_temporal is not None: | |
attn_output = rearrange(hidden_states, "b (f h w) c -> b c f h w", f=num_frames, h=height, w=width) | |
attn_output = self.attn_temporal(attn_output) | |
hidden_states = rearrange(attn_output, "b c f h w -> b (f h w) c") | |
# 3. Cross-Attention | |
if self.attn2 is not None: | |
if self.use_ada_layer_norm: | |
norm_hidden_states = self.norm2(hidden_states, timestep) | |
elif self.use_ada_layer_norm_zero or self.use_layer_norm: | |
norm_hidden_states = self.norm2(hidden_states) | |
elif self.use_ada_layer_norm_single: | |
# For PixArt norm2 isn't applied here: | |
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 | |
norm_hidden_states = hidden_states | |
else: | |
raise ValueError("Incorrect norm") | |
if self.pos_embed is not None and self.use_ada_layer_norm_single is None: | |
norm_hidden_states = self.pos_embed(norm_hidden_states) | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
**cross_attention_kwargs, | |
) | |
hidden_states = attn_output + hidden_states | |
# 4. Feed-forward | |
if not self.use_ada_layer_norm_single: | |
norm_hidden_states = self.norm3(hidden_states) | |
if self.use_ada_layer_norm_zero: | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
if self.use_ada_layer_norm_single: | |
norm_hidden_states = self.norm2(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp | |
if self._chunk_size is not None: | |
# "feed_forward_chunk_size" can be used to save memory | |
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: | |
raise ValueError( | |
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." | |
) | |
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size | |
ff_output = torch.cat( | |
[ | |
self.ff(hid_slice, scale=lora_scale) | |
for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim) | |
], | |
dim=self._chunk_dim, | |
) | |
else: | |
ff_output = self.ff(norm_hidden_states, scale=lora_scale) | |
if self.norm4 is not None: | |
ff_output = self.norm4(ff_output) | |
if self.use_ada_layer_norm_zero: | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
elif self.use_ada_layer_norm_single: | |
ff_output = gate_mlp * ff_output | |
hidden_states = ff_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
return hidden_states | |
class SelfAttentionTemporalTransformerBlock(nn.Module): | |
r""" | |
A Temporal Transformer block. | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
num_embeds_ada_norm (: | |
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. | |
attention_bias (: | |
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. | |
only_cross_attention (`bool`, *optional*): | |
Whether to use only cross-attention layers. In this case two cross attention layers are used. | |
double_self_attention (`bool`, *optional*): | |
Whether to use two self-attention layers. In this case no cross attention layers are used. | |
upcast_attention (`bool`, *optional*): | |
Whether to upcast the attention computation to float32. This is useful for mixed precision training. | |
norm_elementwise_affine (`bool`, *optional*, defaults to `True`): | |
Whether to use learnable elementwise affine parameters for normalization. | |
norm_type (`str`, *optional*, defaults to `"layer_norm"`): | |
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. | |
final_dropout (`bool` *optional*, defaults to False): | |
Whether to apply a final dropout after the last feed-forward layer. | |
attention_type (`str`, *optional*, defaults to `"default"`): | |
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. | |
positional_embeddings (`str`, *optional*, defaults to `None`): | |
The type of positional embeddings to apply to. | |
num_positional_embeddings (`int`, *optional*, defaults to `None`): | |
The maximum number of positional embeddings to apply. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
double_self_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_elementwise_affine: bool = True, | |
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single' | |
norm_eps: float = 1e-5, | |
final_dropout: bool = False, | |
attention_type: str = "default", | |
positional_embeddings: Optional[str] = None, | |
num_positional_embeddings: Optional[int] = None, | |
qk_norm = False, | |
after_norm = False, | |
): | |
super().__init__() | |
self.only_cross_attention = only_cross_attention | |
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" | |
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" | |
self.use_ada_layer_norm_single = norm_type == "ada_norm_single" | |
self.use_layer_norm = norm_type == "layer_norm" | |
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: | |
raise ValueError( | |
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" | |
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." | |
) | |
if positional_embeddings and (num_positional_embeddings is None): | |
raise ValueError( | |
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." | |
) | |
if positional_embeddings == "sinusoidal": | |
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings) | |
else: | |
self.pos_embed = None | |
# Define 3 blocks. Each block has its own normalization layer. | |
# 1. Self-Attn | |
if self.use_ada_layer_norm: | |
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
elif self.use_ada_layer_norm_zero: | |
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) | |
else: | |
self.norm1 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
if pkg_resources.parse_version(installed_version) >= pkg_resources.parse_version("0.28.2"): | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
qk_norm="layer_norm" if qk_norm else None, | |
processor=HunyuanAttnProcessor2_0() if qk_norm else AttnProcessor2_0(), | |
) | |
else: | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
) | |
# 2. Cross-Attn | |
if cross_attention_dim is not None or double_self_attention: | |
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block. | |
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during | |
# the second cross attention block. | |
self.norm2 = ( | |
AdaLayerNorm(dim, num_embeds_ada_norm) | |
if self.use_ada_layer_norm | |
else FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
) | |
if pkg_resources.parse_version(installed_version) >= pkg_resources.parse_version("0.28.2"): | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim if not double_self_attention else None, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
qk_norm="layer_norm" if qk_norm else None, | |
processor=HunyuanAttnProcessor2_0() if qk_norm else AttnProcessor2_0(), | |
) # is self-attn if encoder_hidden_states is none | |
else: | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim if not double_self_attention else None, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) # is self-attn if encoder_hidden_states is none | |
else: | |
self.norm2 = None | |
self.attn2 = None | |
# 3. Feed-forward | |
if not self.use_ada_layer_norm_single: | |
self.norm3 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout) | |
if after_norm: | |
self.norm4 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
else: | |
self.norm4 = None | |
# 4. Fuser | |
if attention_type == "gated" or attention_type == "gated-text-image": | |
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim) | |
# 5. Scale-shift for PixArt-Alpha. | |
if self.use_ada_layer_norm_single: | |
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = 0 | |
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int): | |
# Sets chunk feed-forward | |
self._chunk_size = chunk_size | |
self._chunk_dim = dim | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
) -> torch.FloatTensor: | |
# Notice that normalization is always applied before the real computation in the following blocks. | |
# 0. Self-Attention | |
batch_size = hidden_states.shape[0] | |
if self.use_ada_layer_norm: | |
norm_hidden_states = self.norm1(hidden_states, timestep) | |
elif self.use_ada_layer_norm_zero: | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
) | |
elif self.use_layer_norm: | |
norm_hidden_states = self.norm1(hidden_states) | |
elif self.use_ada_layer_norm_single: | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) | |
).chunk(6, dim=1) | |
norm_hidden_states = self.norm1(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa | |
norm_hidden_states = norm_hidden_states.squeeze(1) | |
else: | |
raise ValueError("Incorrect norm used") | |
if self.pos_embed is not None: | |
norm_hidden_states = self.pos_embed(norm_hidden_states) | |
# 1. Retrieve lora scale. | |
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | |
# 2. Prepare GLIGEN inputs | |
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} | |
gligen_kwargs = cross_attention_kwargs.pop("gligen", None) | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
if self.use_ada_layer_norm_zero: | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
elif self.use_ada_layer_norm_single: | |
attn_output = gate_msa * attn_output | |
hidden_states = attn_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
# 2.5 GLIGEN Control | |
if gligen_kwargs is not None: | |
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) | |
# 3. Cross-Attention | |
if self.attn2 is not None: | |
if self.use_ada_layer_norm: | |
norm_hidden_states = self.norm2(hidden_states, timestep) | |
elif self.use_ada_layer_norm_zero or self.use_layer_norm: | |
norm_hidden_states = self.norm2(hidden_states) | |
elif self.use_ada_layer_norm_single: | |
# For PixArt norm2 isn't applied here: | |
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 | |
norm_hidden_states = hidden_states | |
else: | |
raise ValueError("Incorrect norm") | |
if self.pos_embed is not None and self.use_ada_layer_norm_single is None: | |
norm_hidden_states = self.pos_embed(norm_hidden_states) | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
**cross_attention_kwargs, | |
) | |
hidden_states = attn_output + hidden_states | |
# 4. Feed-forward | |
if not self.use_ada_layer_norm_single: | |
norm_hidden_states = self.norm3(hidden_states) | |
if self.use_ada_layer_norm_zero: | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
if self.use_ada_layer_norm_single: | |
norm_hidden_states = self.norm2(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp | |
if self._chunk_size is not None: | |
# "feed_forward_chunk_size" can be used to save memory | |
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: | |
raise ValueError( | |
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." | |
) | |
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size | |
ff_output = torch.cat( | |
[ | |
self.ff(hid_slice, scale=lora_scale) | |
for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim) | |
], | |
dim=self._chunk_dim, | |
) | |
else: | |
ff_output = self.ff(norm_hidden_states, scale=lora_scale) | |
if self.norm4 is not None: | |
ff_output = self.norm4(ff_output) | |
if self.use_ada_layer_norm_zero: | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
elif self.use_ada_layer_norm_single: | |
ff_output = gate_mlp * ff_output | |
hidden_states = ff_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
return hidden_states | |
class KVCompressionTransformerBlock(nn.Module): | |
r""" | |
A Temporal Transformer block. | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
num_embeds_ada_norm (: | |
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. | |
attention_bias (: | |
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. | |
only_cross_attention (`bool`, *optional*): | |
Whether to use only cross-attention layers. In this case two cross attention layers are used. | |
double_self_attention (`bool`, *optional*): | |
Whether to use two self-attention layers. In this case no cross attention layers are used. | |
upcast_attention (`bool`, *optional*): | |
Whether to upcast the attention computation to float32. This is useful for mixed precision training. | |
norm_elementwise_affine (`bool`, *optional*, defaults to `True`): | |
Whether to use learnable elementwise affine parameters for normalization. | |
norm_type (`str`, *optional*, defaults to `"layer_norm"`): | |
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. | |
final_dropout (`bool` *optional*, defaults to False): | |
Whether to apply a final dropout after the last feed-forward layer. | |
attention_type (`str`, *optional*, defaults to `"default"`): | |
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. | |
positional_embeddings (`str`, *optional*, defaults to `None`): | |
The type of positional embeddings to apply to. | |
num_positional_embeddings (`int`, *optional*, defaults to `None`): | |
The maximum number of positional embeddings to apply. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
double_self_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_elementwise_affine: bool = True, | |
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single' | |
norm_eps: float = 1e-5, | |
final_dropout: bool = False, | |
attention_type: str = "default", | |
positional_embeddings: Optional[str] = None, | |
num_positional_embeddings: Optional[int] = None, | |
kvcompression: Optional[bool] = False, | |
qk_norm = False, | |
after_norm = False, | |
): | |
super().__init__() | |
self.only_cross_attention = only_cross_attention | |
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" | |
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" | |
self.use_ada_layer_norm_single = norm_type == "ada_norm_single" | |
self.use_layer_norm = norm_type == "layer_norm" | |
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: | |
raise ValueError( | |
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" | |
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." | |
) | |
if positional_embeddings and (num_positional_embeddings is None): | |
raise ValueError( | |
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." | |
) | |
if positional_embeddings == "sinusoidal": | |
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings) | |
else: | |
self.pos_embed = None | |
# Define 3 blocks. Each block has its own normalization layer. | |
# 1. Self-Attn | |
if self.use_ada_layer_norm: | |
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
elif self.use_ada_layer_norm_zero: | |
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) | |
else: | |
self.norm1 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
self.kvcompression = kvcompression | |
if kvcompression: | |
self.attn1 = KVCompressionCrossAttention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
) | |
else: | |
if pkg_resources.parse_version(installed_version) >= pkg_resources.parse_version("0.28.2"): | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
qk_norm="layer_norm" if qk_norm else None, | |
processor=HunyuanAttnProcessor2_0() if qk_norm else AttnProcessor2_0(), | |
) | |
else: | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
) | |
# 2. Cross-Attn | |
if cross_attention_dim is not None or double_self_attention: | |
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block. | |
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during | |
# the second cross attention block. | |
self.norm2 = ( | |
AdaLayerNorm(dim, num_embeds_ada_norm) | |
if self.use_ada_layer_norm | |
else FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
) | |
if pkg_resources.parse_version(installed_version) >= pkg_resources.parse_version("0.28.2"): | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim if not double_self_attention else None, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
qk_norm="layer_norm" if qk_norm else None, | |
processor=HunyuanAttnProcessor2_0() if qk_norm else AttnProcessor2_0(), | |
) # is self-attn if encoder_hidden_states is none | |
else: | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim if not double_self_attention else None, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) # is self-attn if encoder_hidden_states is none | |
else: | |
self.norm2 = None | |
self.attn2 = None | |
# 3. Feed-forward | |
if not self.use_ada_layer_norm_single: | |
self.norm3 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout) | |
if after_norm: | |
self.norm4 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
else: | |
self.norm4 = None | |
# 4. Fuser | |
if attention_type == "gated" or attention_type == "gated-text-image": | |
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim) | |
# 5. Scale-shift for PixArt-Alpha. | |
if self.use_ada_layer_norm_single: | |
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = 0 | |
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int): | |
# Sets chunk feed-forward | |
self._chunk_size = chunk_size | |
self._chunk_dim = dim | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
num_frames: int = 16, | |
height: int = 32, | |
width: int = 32, | |
use_reentrant: bool = False, | |
) -> torch.FloatTensor: | |
# Notice that normalization is always applied before the real computation in the following blocks. | |
# 0. Self-Attention | |
batch_size = hidden_states.shape[0] | |
if self.use_ada_layer_norm: | |
norm_hidden_states = self.norm1(hidden_states, timestep) | |
elif self.use_ada_layer_norm_zero: | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
) | |
elif self.use_layer_norm: | |
norm_hidden_states = self.norm1(hidden_states) | |
elif self.use_ada_layer_norm_single: | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) | |
).chunk(6, dim=1) | |
norm_hidden_states = self.norm1(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa | |
norm_hidden_states = norm_hidden_states.squeeze(1) | |
else: | |
raise ValueError("Incorrect norm used") | |
if self.pos_embed is not None: | |
norm_hidden_states = self.pos_embed(norm_hidden_states) | |
# 1. Retrieve lora scale. | |
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | |
# 2. Prepare GLIGEN inputs | |
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} | |
gligen_kwargs = cross_attention_kwargs.pop("gligen", None) | |
if self.kvcompression: | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
num_frames=num_frames, | |
height=height, | |
width=width, | |
**cross_attention_kwargs, | |
) | |
else: | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
if self.use_ada_layer_norm_zero: | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
elif self.use_ada_layer_norm_single: | |
attn_output = gate_msa * attn_output | |
hidden_states = attn_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
# 2.5 GLIGEN Control | |
if gligen_kwargs is not None: | |
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) | |
# 3. Cross-Attention | |
if self.attn2 is not None: | |
if self.use_ada_layer_norm: | |
norm_hidden_states = self.norm2(hidden_states, timestep) | |
elif self.use_ada_layer_norm_zero or self.use_layer_norm: | |
norm_hidden_states = self.norm2(hidden_states) | |
elif self.use_ada_layer_norm_single: | |
# For PixArt norm2 isn't applied here: | |
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 | |
norm_hidden_states = hidden_states | |
else: | |
raise ValueError("Incorrect norm") | |
if self.pos_embed is not None and self.use_ada_layer_norm_single is None: | |
norm_hidden_states = self.pos_embed(norm_hidden_states) | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
**cross_attention_kwargs, | |
) | |
hidden_states = attn_output + hidden_states | |
# 4. Feed-forward | |
if not self.use_ada_layer_norm_single: | |
norm_hidden_states = self.norm3(hidden_states) | |
if self.use_ada_layer_norm_zero: | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
if self.use_ada_layer_norm_single: | |
norm_hidden_states = self.norm2(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp | |
if self._chunk_size is not None: | |
# "feed_forward_chunk_size" can be used to save memory | |
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: | |
raise ValueError( | |
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." | |
) | |
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size | |
ff_output = torch.cat( | |
[ | |
self.ff(hid_slice, scale=lora_scale) | |
for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim) | |
], | |
dim=self._chunk_dim, | |
) | |
else: | |
ff_output = self.ff(norm_hidden_states, scale=lora_scale) | |
if self.norm4 is not None: | |
ff_output = self.norm4(ff_output) | |
if self.use_ada_layer_norm_zero: | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
elif self.use_ada_layer_norm_single: | |
ff_output = gate_mlp * ff_output | |
hidden_states = ff_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
return hidden_states |