File size: 15,929 Bytes
01798da
fe8891a
 
 
 
 
 
4c6a2c0
fe8891a
297fa26
bd39717
939111c
cf014e9
 
 
 
3c5164e
cf014e9
 
 
 
 
 
 
 
 
 
3766821
cf014e9
 
 
3766821
cf014e9
3766821
cf014e9
 
 
 
 
 
3766821
fe8891a
4ee41c4
6a5e649
fe8891a
 
 
cf014e9
bd39717
 
 
 
 
 
 
cf014e9
bd39717
 
 
 
 
 
 
fe8891a
14c7144
 
 
 
bd39717
14c7144
 
a0e0bd1
 
297fa26
a0e0bd1
 
 
 
 
 
 
 
4cfa403
a0e0bd1
 
 
 
 
4cfa403
 
91fe340
a0e0bd1
 
 
 
 
 
 
 
 
6993331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1c8ea8
91fe340
 
 
 
 
 
c1c8ea8
91fe340
 
 
27d3fa1
c1c8ea8
 
 
91fe340
 
 
 
 
 
3766821
bd39717
3766821
f2922b7
3766821
f2922b7
 
 
 
 
 
 
 
 
 
 
91fe340
 
 
f2922b7
 
41dab73
f2922b7
 
14c7144
3766821
f2922b7
 
41dab73
297fa26
9ab6075
297fa26
44c1772
9ab6075
91fe340
 
41dab73
 
f2922b7
 
 
 
 
 
41dab73
f2922b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe8891a
f2922b7
 
41dab73
f2922b7
 
 
 
fe8891a
41dab73
f2922b7
 
41dab73
8478e85
3c5164e
 
 
 
 
 
 
 
 
 
fe8891a
050abd3
 
9a90f03
050abd3
f5c96f4
 
5804d25
7cd8f52
56a1ad7
 
9222c3c
56a1ad7
 
7f4427c
 
 
 
 
050abd3
5804d25
9222c3c
56a1ad7
 
 
5804d25
 
 
f5c96f4
a432e05
f5c96f4
9222c3c
7838dff
 
97e7276
5804d25
f5c96f4
 
a432e05
 
 
 
 
 
 
 
6f24840
 
 
 
 
 
f5c96f4
 
5804d25
 
f5c96f4
 
 
 
 
 
 
 
 
 
8478e85
f5c96f4
7cd8f52
f5c96f4
32ec6d9
 
 
 
 
f5c96f4
32ec6d9
 
 
 
 
 
 
 
3766821
32ec6d9
 
 
 
 
 
 
 
7205bda
32ec6d9
 
 
 
 
 
 
 
 
9222c3c
32ec6d9
 
 
 
 
 
 
6e3c28c
32ec6d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd7aba9
a7a64f2
fe8891a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ab6075
297fa26
44c1772
9ab6075
3766821
fe8891a
 
 
 
41dab73
fe8891a
41dab73
fe8891a
3766821
 
fe8891a
41dab73
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

import gradio as gr
import requests
import io
import random
import os
from PIL import Image
from huggingface_hub import InferenceClient
from deep_translator import GoogleTranslator
from gradio_client import Client
import logging
from datetime import datetime

import sqlite3
from datetime import datetime


# Initialize the database
def init_db(file='logs.db'):
    conn = sqlite3.connect(file)
    c = conn.cursor()
    c.execute('''CREATE TABLE IF NOT EXISTS logs
                 (timestamp TEXT, message TEXT)''')
    conn.commit()
    conn.close()

# Log a request
def log_request(prompt, is_negative, steps, cfg_scale, sampler, seed, strength, use_dev, enhance_prompt_style, enhance_prompt_option, nemo_enhance_prompt_style, use_mistral_nemo, huggingface_api_key):
    log_message = f"Request: prompt='{prompt}', is_negative={is_negative}, steps={steps}, cfg_scale={cfg_scale}, "
    log_message += f"sampler='{sampler}', seed={seed}, strength={strength}, use_dev={use_dev}, "
    log_message += f"enhance_prompt_style='{enhance_prompt_style}', enhance_prompt_option={enhance_prompt_option}, "
    log_message += f"nemo_enhance_prompt_style='{nemo_enhance_prompt_style}', use_mistral_nemo={use_mistral_nemo}"
    if huggingface_api_key:
        log_message += f"huggingface_api_key='{huggingface_api_key}'"
    
    conn = sqlite3.connect('acces_log.log')
    c = conn.cursor()
    c.execute("INSERT INTO logs VALUES (?, ?)", (datetime.now().isoformat(), log_message))
    conn.commit()
    conn.close()
    
# os.makedirs('assets', exist_ok=True)
if not os.path.exists('icon.png'):
    os.system("wget -O icon.png https://huggingface.co/spaces/K00B404/FLUX.1-Dev-Serverless-darn-enhanced-prompt/resolve/main/edge.png")
API_URL_DEV = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
timeout = 100
init_db('acces_log.log')

# Set up logging
logging.basicConfig(filename='access.log', level=logging.INFO,
                    format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S')



def log_requestold(prompt, is_negative, steps, cfg_scale, sampler, seed, strength, use_dev, enhance_prompt_style, enhance_prompt_option, nemo_enhance_prompt_style, use_mistral_nemo, huggingface_api_key):
    log_message = f"Request: prompt='{prompt}', is_negative={is_negative}, steps={steps}, cfg_scale={cfg_scale}, "
    log_message += f"sampler='{sampler}', seed={seed}, strength={strength}, use_dev={use_dev}, "
    log_message += f"enhance_prompt_style='{enhance_prompt_style}', enhance_prompt_option={enhance_prompt_option}, "
    log_message += f"nemo_enhance_prompt_style='{nemo_enhance_prompt_style}', use_mistral_nemo={use_mistral_nemo}"
    if huggingface_api_key:
        log_message += f"huggingface_api_key='{huggingface_api_key}'"
    logging.info(log_message)

def check_ubuse(prompt,word_list=["little girl"]):
    for word in word_list:
        if word in prompt:
            print(f"Abuse! prompt {prompt} wiped!")
            return "None"
    return prompt
    
def enhance_prompt(prompt, model="mistralai/Mistral-7B-Instruct-v0.1", style="photo-realistic"):
    
    client = Client("K00B404/Mistral-Nemo-custom")
    
    system_prompt=f"""
    You are a image generation prompt enhancer specialized in the {style} style. 
    You must respond only with the enhanced version of the users input prompt
    Remember, image generation models can be stimulated by refering to camera 'effect' in the prompt like :4k ,award winning, super details, 35mm lens, hd
    """
    user_message=f"###input image generation prompt### {prompt}"
   
    result = client.predict(
    		system_prompt=system_prompt,
    		user_message=user_message,
    		max_tokens=256,
    		model_id=model,# "mistralai/Mistral-Nemo-Instruct-2407",
    		api_name="/predict"
    )
    return result
    
    # The output value that appears in the "Response" Textbox component.
    """result = client.predict(
        system_prompt=system_prompt,#"You are a image generation prompt enhancer and must respond only with the enhanced version of the users input prompt",
        user_message=user_message,
        max_tokens=500,
        api_name="/predict"
    )
    return result
    """


def enhance_prompt_v2(prompt, model="mistralai/Mistral-Nemo-Instruct-2407", style="photo-realistic"):
    
    client = Client("K00B404/Mistral-Nemo-custom")
    
    system_prompt=f"""
    You are a image generation prompt enhancer specialized in the {style} style. 
    You must respond only with the enhanced version of the users input prompt
    Remember, image generation models can be stimulated by refering to camera 'effect' in the prompt like :4k ,award winning, super details, 35mm lens, hd
    """
    user_message=f"###input image generation prompt### {prompt}"
   
    result = client.predict(
    		system_prompt=system_prompt,
    		user_message=user_message,
    		max_tokens=256,
    		model_id=model,
    		api_name="/predict"
    )
    return result

    
def mistral_nemo_call(prompt, API_TOKEN, model="mistralai/Mistral-Nemo-Instruct-2407", style="photo-realistic"):
    
    client = InferenceClient(api_key=API_TOKEN)
    system_prompt=f"""
    You are a image generation prompt enhancer specialized in the {style} style. 
    You must respond only with the enhanced version of the users input prompt
    Remember, image generation models can be stimulated by refering to camera 'effect' in the prompt like :4k ,award winning, super details, 35mm lens, hd
    """
    
    response = ""
    for message in client.chat_completion(
        model=model,
        messages=[{"role": "system", "content": system_prompt},
                  {"role": "user", "content": prompt}
                 ],
        max_tokens=500,
        stream=True,
    ):
        response += message.choices[0].delta.content
    return response
    
def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, huggingface_api_key=None, use_dev=False,enhance_prompt_style="generic", enhance_prompt_option=False, nemo_enhance_prompt_style="generic", use_mistral_nemo=False):
    
    log_request(prompt, is_negative, steps, cfg_scale, sampler, seed, strength, use_dev, enhance_prompt_style, enhance_prompt_option, nemo_enhance_prompt_style, use_mistral_nemo, huggingface_api_key)
    # Determine which API URL to use
    api_url = API_URL_DEV if use_dev else API_URL

    # Check if the request is an API call by checking for the presence of the huggingface_api_key
    is_api_call = huggingface_api_key is not None

    if is_api_call:
        # Use the environment variable for the API key in GUI mode
        API_TOKEN = os.getenv("HF_READ_TOKEN")
    else:
        # Validate the API key if it's an API call
        if huggingface_api_key == "":
            raise gr.Error("API key is required for API calls.")
        API_TOKEN = huggingface_api_key
    
    headers = {"Authorization": f"Bearer {API_TOKEN}"} 

    if prompt == "" or prompt is None:
        return None, None, None

    key = random.randint(0, 999)
    prompt = check_ubuse(prompt)
    #prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
    print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')

    original_prompt = prompt
    if enhance_prompt_option:
        prompt = enhance_prompt_v2(prompt, style=enhance_prompt_style)
        print(f'\033[1mGeneration {key} enhanced prompt:\033[0m {prompt}')
    if use_mistral_nemo:
        prompt = mistral_nemo_call(prompt, API_TOKEN=API_TOKEN, style=nemo_enhance_prompt_style)
        print(f'\033[1mGeneration {key} Mistral-Nemo prompt:\033[0m {prompt}')
        
    final_prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
    print(f'\033[1mGeneration {key}:\033[0m {final_prompt}')

    # If seed is -1, generate a random seed and use it
    if seed == -1:
        seed = random.randint(1, 1000000000)

    payload = {
        "inputs": final_prompt,
        "is_negative": is_negative,
        "steps": steps,
        "cfg_scale": cfg_scale,
        "seed": seed,
        "strength": strength
    }

    response = requests.post(api_url, headers=headers, json=payload, timeout=timeout)
    if response.status_code != 200:
        print(f"Error: Failed to get image. Response status: {response.status_code}")
        print(f"Response content: {response.text}")
        if response.status_code == 503:
            raise gr.Error(f"{response.status_code} : The model is being loaded")
        raise gr.Error(f"{response.status_code}")
    
    try:
        image_bytes = response.content
        image = Image.open(io.BytesIO(image_bytes))
        print(f'\033[1mGeneration {key} completed!\033[0m ({final_prompt})')

        # Save the image to a file and return the file path and seed
        output_path = f"./output_{key}.png"
        image.save(output_path)
        
        return output_path, seed, prompt if enhance_prompt_option else original_prompt
    except Exception as e:
        print(f"Error when trying to open the image: {e}")
        return None, None, None


  
title_html="""
    <center>
        <div id="title-container">
            <h1 id="title-text">FLUX Capacitor</h1>
        </div>
    </center>
"""

css = """
.gradio-container {
    background: url(https://huggingface.co/spaces/K00B404/FLUX.1-Dev-Serverless-darn-enhanced-prompt/resolve/main/edge.png);
    background-size: 900px 880px;
    background-repeat: no-repeat;
    background-position: center;
    background-attachment: fixed;
    color:#000;
}
.dark\:bg-gray-950:is(.dark *) {
  --tw-bg-opacity: 1;
  background-color: rgb(0, 17, 0);
}

.gradio-container-4-41-0 .prose :last-child {
  margin-top: 8px !important;
}
.gradio-container-4-41-0 .prose :last-child {
  margin-bottom: -7px !important;
}
.dark {
    --button-primary-background-fill: #000;
    --button-primary-background-fill-hover: #00000070;
    --background-fill-primary: #000;
    --background-fill-secondary: #000;
}
.hide-container {
    margin-top;-2px;
}
#app-container3 {
    background-color: rgba(255, 255, 255, 0.001);  /* Corrected to make semi-transparent */
    max-width: 1600px;
    margin-left: auto;
    margin-right: auto;
    margin-bottom: 10px;
    border-radius: 125px;
    box-shadow: 0 0 10px rgba(0,0,0,0.1); /* Adjusted shadow opacity */
}
#app-container {
    background-color: rgba(255, 255, 255, 0.001);  /* Semi-transparent background */
    max-width: 600px;
    margin: 0 auto;  /* Center horizontally */
    padding-bottom: 10px;
    border-radius: 25px;
    box-shadow: 0 0 10px rgba(0, 0, 0, 0.1); /* Adjusted shadow opacity */
}
.panel-container {
    background-image: url('your-neon-border-image.png');
    background-size: 100% 100%; /* Adjust the size to cover the container */
    background-repeat: no-repeat;
    background-position: center;
}
#title-container {
    display: flex;
    align-items: center
    margin-bottom:10px;
    justify-content: center;
}

#title-icon {
    width: 32px;
    height: auto;
    margin-right: 10px;
}

#title-text {
    font-size: 30px;
    font-weight: bold;
    color: #000;
}
:root {
  --panel-size: 300px;
  --border-width: 4px;
  --glow-blur: 15px;
}

body {
  background-color: #000;
  display: flex;
  justify-content: center;
  align-items: center;
  min-height: 100vh;
  margin: 0;
}

.neon-panel {
  width: var(--panel-size);
  height: var(--panel-size);
  background-color: #000;
  position: relative;
  border-radius: 20px;
  overflow: hidden;
}

.neon-panel::before,
.neon-panel::after {
  content: '';
  position: absolute;
  left: -2px;
  top: -2px;
  background: linear-gradient(
    124deg,
    #ff2400, #e81d1d, #e8b71d, #e3e81d, #1de840,
    #1ddde8, #2b1de8, #000, #dd00f3
  );
  background-size: 300% 300%;
  width: calc(100% + 4px);
  height: calc(100% + 4px);
  z-index: -1;
  animation: moveGradient 10s ease infinite;
}

.neon-panel::after {
  filter: blur(var(--glow-blur));
}

.neon-panel-content {
  position: absolute;
  top: var(--border-width);
  left: var(--border-width);
  right: var(--border-width);
  bottom: var(--border-width);
  background-color: #000;
  border-radius: 16px;
  z-index: 1;
}

@keyframes moveGradient {
  0% { background-position: 0% 50%; }
  50% { background-position: 100% 50%; }
  100% { background-position: 0% 50%; }
}

@media (max-width: 768px) {
  :root {
    --panel-size: 250px;
    --glow-blur: 10px;
  }
}

@media (prefers-reduced-motion: reduce) {
  .neon-panel::before,
  .neon-panel::after {
    animation: none;
  }
}
"""


with gr.Blocks( css=css) as app:
    gr.HTML(title_html) # title html 
    with gr.Column(elem_id="app-container"):
        with gr.Row():
            with gr.Column(elem_id="prompt-container"):
                with gr.Row():
                    text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
                with gr.Row():
                    with gr.Accordion("Advanced Settings", open=False):
                        negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
                        steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1)
                        cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
                        method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
                        strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
                        seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
                        huggingface_api_key = gr.Textbox(label="Hugging Face API Key (required for API calls)", placeholder="Enter your Hugging Face API Key here", type="password", elem_id="api-key")
                        use_dev = gr.Checkbox(label="Use Dev API", value=False, elem_id="use-dev-checkbox")
                        enhance_prompt_style =  gr.Textbox(label="Enhance Prompt Style", placeholder="Enter style for the prompt enhancer here", elem_id="enhance-prompt-style")
                        enhance_prompt_option = gr.Checkbox(label="Enhance Prompt", value=False, elem_id="enhance-prompt-checkbox")
                        use_mistral_nemo = gr.Checkbox(label="Use Mistral Nemo", value=False, elem_id="use-mistral-checkbox")
                        nemo_prompt_style =  gr.Textbox(label="Nemo Enhance Prompt Style", placeholder="Enter style for the prompt enhancer here", elem_id="nemo-enhance-prompt-style")
                        
        with gr.Row():
            text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
        with gr.Row():
            image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
        with gr.Row():
            seed_output = gr.Textbox(label="Seed Used", elem_id="seed-output")
            final_prompt_output = gr.Textbox(label="Final Prompt", elem_id="final-prompt-output")
        
        # Adjust the click function to include the API key, use_dev, and enhance_prompt_option as inputs
        text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, huggingface_api_key, use_dev, enhance_prompt_style,enhance_prompt_option, enhance_prompt_style, use_mistral_nemo], outputs=[image_output, seed_output, final_prompt_output])

app.launch(show_api=True, share=False)