Mistral-Nemo-custom / app_back.py
K00B404's picture
Rename app.py to app_back.py
c7ad258 verified
raw
history blame
1.51 kB
import os
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import gradio as gr
from threading import Thread
MODEL_LIST = ["mistralai/Mistral-Nemo-Instruct-2407"]
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = os.environ.get("MODEL_ID")
# filename: gradio_app.py
import gradio as gr
from huggingface_hub import InferenceClient
# Initialize the InferenceClient
client = InferenceClient(
MODEL,
token=HF_TOKEN,
)
def chat_with_model(system_prompt, user_message):
# Prepare messages for the chat completion
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_message}
]
# Collect the response from the model
response = ""
for message in client.chat_completion(
messages=messages,
max_tokens=500,
stream=True
):
response += message.choices[0].delta.content
return response
# Create the Gradio interface
iface = gr.Interface(
fn=chat_with_model,
inputs=[
gr.Textbox(label="System Prompt", placeholder="Enter the system prompt here..."),
gr.Textbox(label="User Message", placeholder="Ask a question..."),
],
outputs=gr.Textbox(label="Response"),
title="Mistral Chatbot",
description="Chat with Mistral model using your own system prompts."
)
# Launch the app
if __name__ == "__main__":
iface.launch(show_api=True, share=False,show_error=True)