Spaces:
Runtime error
Runtime error
import os | |
import sys | |
from functools import partial | |
from typing import List, Union | |
import fire | |
import numpy as np | |
from loaders import get_loaders, get_tokenizer | |
from prompter import generate_prompt, prompt_types, PromptType | |
from utils import get_githash, copy_code | |
import torch | |
def log(*args, **kwargs): | |
if int(os.environ.get("LOCAL_RANK", 0)) == 0: | |
if 'flush' not in kwargs: | |
kwargs['flush'] = True | |
print(*args, **kwargs) | |
# supported by huggingface evaluate | |
supported_metrics = ['bleu', 'rouge', 'sacrebleu', 'meteor'] | |
def train( | |
save_code: bool = False, | |
run_id: int = None, | |
base_model: str = 'h2oai/h2ogpt-oig-oasst1-512-6_9b', | |
# base_model: str = 'h2oai/h2ogpt-oasst1-512-12b', | |
# base_model: str = 'h2oai/h2ogpt-oasst1-512-20b', | |
# base_model: str = 'EleutherAI/gpt-neox-20b', | |
# base_model: str = 'EleutherAI/pythia-12b-deduped', | |
# base_model: str = 'togethercomputer/GPT-NeoXT-Chat-Base-20B', | |
# base_model: str = 'decapoda-research/llama-7b-hf', | |
# base_model: str = 'decapoda-research/llama-13b-hf', | |
# base_model: str = 'decapoda-research/llama-30b-hf', | |
# base_model: str = 'EleutherAI/gpt-j-6B', | |
# only needed if base_model is self-exported HF state without tokenizer | |
tokenizer_base_model: str = None, | |
# tokenizer_base_model: str = 'EleutherAI/gpt-neox-20b', | |
data_path: str = "h2oai/openassistant_oasst1_h2ogpt", | |
data_col_dict: dict = None, | |
# data_path: str = "./dai_docs.train.json", | |
prompt_type: Union[str, int] = "plain", # "plain", "instruct", "quality", "human_bot", "dai_faq" | |
valid_path: str = None, | |
# valid_path: str = "./dai_docs.valid.json", | |
# data_mix_in_path: str = "laion/OIG", # way too big, medium quality | |
data_mix_in_path: str = "0-hero/OIG-small-chip2", # high quality, 50 MB, good enough for now | |
data_mix_in_factor: float = 0.0, # >1: more mix-in data, <1: more of data_path data | |
data_mix_in_col_dict: dict = {'user': 'instruction', 'chip2': 'output'}, | |
data_mix_in_prompt_type: str = "instruct", # just instruction->output, same as instruct | |
output_dir: str = None, | |
# LoRA checkpoint continuation | |
lora_weights: str = "", | |
# batching training hyperparams | |
batch_size: int = 128, | |
micro_batch_size: int = 4, | |
gradient_checkpointing=False, # unnecessary with gradient accumulation enabled | |
fp16=True, | |
train_8bit=False, | |
train_4bit=False, | |
# general training hyperparams | |
num_epochs: float = 1, | |
learning_rate: float = 3e-4, | |
# validation settings | |
val_set_size: int = None, | |
val_metrics: List[str] = [], | |
eval_steps: int = None, # to control eval steps via steps | |
eval_epochs: float = None, # to control eval steps via epochs | |
# lora hyperparams | |
lora_r: int = 8, | |
lora_alpha: int = 16, | |
lora_dropout: float = 0.05, | |
lora_target_modules: List[str] = None, | |
llama_type: bool = None, | |
llama_flash_attn: bool = False, | |
# llm hyperparams | |
train_on_inputs: bool = True, # if False, masks out inputs in loss | |
group_by_length: bool = False, # if True, faster, but produces an odd training loss curve | |
resume_from_checkpoint: str = None, # either training checkpoint or final adapter | |
cutoff_len: int = 512, # larger values use more memory | |
drop_truncations: bool = False, # if True, drop any truncated long sequences | |
# torch training params | |
ddp: bool = True, # set to False if OOM with True, for multi-GPU model parallelism | |
local_files_only: bool = False, # else will download new versions, normally unwanted | |
resume_download: bool = True, | |
use_auth_token: Union[str, bool] = False, # True requires CLI did huggingface-cli login before running | |
warmup_steps: int = 100, | |
logging_steps: int = 1, | |
save_steps: int = None, # must be round multiple of eval_steps | |
save_total_limit: int = 3, | |
add_eos_token: bool = False, | |
): | |
if llama_flash_attn: | |
# Need to call this before importing transformers. | |
from llama_flash_attn_monkey_patch import replace_llama_attn_with_flash_attn | |
replace_llama_attn_with_flash_attn() | |
# allow set token directly | |
use_auth_token = os.environ.get("HUGGINGFACE_API_TOKEN", use_auth_token) | |
prompt_type = str(prompt_type) # migration from integers | |
assert prompt_type in prompt_types | |
world_size = int(os.getenv("WORLD_SIZE", 1)) | |
local_rank = int(os.getenv("LOCAL_RANK", 0)) | |
rank = int(os.getenv("RANK", 0)) | |
print(f"local_rank: {local_rank}") | |
print(f"global rank: {rank}") | |
gpus = max(world_size, torch.cuda.device_count()) | |
run_id = run_id or 0 | |
if not data_path: | |
raise ValueError("No data_path provided") | |
if not output_dir: | |
output_dir = f"{base_model.split('/')[-1]}.{data_path.replace('/', '')}.{num_epochs}_epochs.{get_githash() or 'nogit'}.{run_id}" | |
if os.path.exists(output_dir) and not resume_from_checkpoint: | |
raise FileExistsError( | |
f"output_dir {output_dir} based on run_id {run_id} already exists. Please pick a different run_id.") | |
else: | |
if os.path.exists(output_dir) and not resume_from_checkpoint: | |
raise FileExistsError( | |
f"output_dir {output_dir} already exists. Please pick a different output_dir, or specify a run_id instead.") | |
device_map = "auto" | |
if save_code: | |
copy_code(run_id) | |
if tokenizer_base_model is None: | |
tokenizer_base_model = base_model | |
if llama_type is None: | |
llama_type = "llama" in base_model.lower() | |
if llama_type and llama_flash_attn: | |
import pkg_resources | |
try: | |
pkg_resources.get_distribution('flash_attn') | |
can_do_flash_attn = True | |
except (pkg_resources.DistributionNotFound, pkg_resources.ContextualVersionConflict): | |
can_do_flash_attn = False | |
if not can_do_flash_attn: | |
raise RuntimeError("""Flash attention not installed. | |
NOTE: for current pytorch 2.0, flash attention requires installing cuda 11.7 via https://developer.nvidia.com/cuda-11-7-0-download-archive?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=20.04&target_type=runfile_local and then when running, to avoid installing driver, docs, samples, just install toolkit. Then when pip installing flash attention do: | |
CUDA_HOME=/usr/local/cuda-11.7 pip install flash-attn""") | |
assert ( | |
base_model | |
), "Please specify a --base_model, e.g. --base_model='decapoda-research/llama-7b-hf'" | |
gradient_accumulation_steps = batch_size // micro_batch_size | |
assert gradient_accumulation_steps >= world_size, "must increase batch_size for multi-GPU" | |
device_map = "auto" | |
locals_dict = locals() | |
locals_print = '\n'.join(['%s: %s' % (k, v) for k, v in locals_dict.items()]) | |
log(f"Training model with params:\n{locals_print}") | |
log("Command: %s\nHash: %s" % (str(' '.join(sys.argv)), get_githash())) | |
max_memory = None | |
if gpus > 1: | |
if ddp: | |
log("Distributed: data parallel") | |
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)} | |
gradient_accumulation_steps = gradient_accumulation_steps // world_size | |
else: | |
free_in_GB = int(min(torch.cuda.mem_get_info()) / 1024 ** 3) | |
max_memory = f"{free_in_GB - 2}GB" | |
max_memory = {i: max_memory for i in range(gpus)} | |
log("world_size: %d" % world_size) | |
log("num_gpus: %d" % gpus) | |
log("max mem: %s" % max_memory) | |
model_loader, tokenizer_loader = get_loaders(llama_type=llama_type, model_name=base_model, reward_type=False) | |
model = model_loader.from_pretrained( | |
base_model, | |
load_in_8bit=train_8bit, | |
load_in_4bit=train_4bit, | |
device_map=device_map, | |
torch_dtype=torch.float16, | |
max_memory=max_memory, | |
local_files_only=local_files_only, | |
trust_remote_code=True, | |
resume_download=resume_download, | |
use_auth_token=use_auth_token, | |
) | |
if gpus > 1: | |
if not ddp: | |
log("model parallel") | |
model.is_parallelizable = True | |
model.model_parallel = True | |
tokenizer = get_tokenizer(tokenizer_loader, tokenizer_base_model, local_files_only, resume_download, use_auth_token) | |
if train_8bit or train_4bit: | |
from peft import ( | |
prepare_model_for_kbit_training, | |
) | |
model = prepare_model_for_kbit_training(model) | |
from peft import LoraConfig, get_peft_model, set_peft_model_state_dict | |
try: | |
from peft import utils | |
lora_mappings = utils.TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING.copy() | |
except AttributeError: | |
from peft import mapping | |
lora_mappings = mapping.TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING.copy() | |
lora_mappings['distilgpt2'] = ["c_attn"] | |
if lora_weights: | |
from peft import PeftModel | |
model = PeftModel.from_pretrained( | |
model, | |
lora_weights, | |
torch_dtype=torch.float16, | |
device_map=device_map, | |
local_files_only=local_files_only, | |
resume_download=resume_download, | |
use_auth_token=use_auth_token, | |
) | |
elif lora_r > 0: | |
if lora_target_modules is None: | |
base_model_lower = base_model.lower() | |
if base_model_lower in lora_mappings: | |
lora_target_modules_cand = [lora_mappings[base_model_lower]] | |
else: | |
lora_target_modules_cand = [["query_key_value"], ["q_proj", "v_proj"]] | |
else: | |
lora_target_modules_cand = [lora_target_modules] | |
for lora_target_modules in lora_target_modules_cand: | |
try: | |
config = LoraConfig( | |
r=lora_r, | |
lora_alpha=lora_alpha, | |
target_modules=lora_target_modules, | |
lora_dropout=lora_dropout, | |
bias="none", | |
task_type="CAUSAL_LM", | |
) | |
model = get_peft_model(model, config) | |
break | |
except ValueError as e: | |
if "Target modules" in str(e) and "not found" in str(e): | |
continue | |
else: | |
raise | |
from peft import PeftModel | |
assert isinstance(model, PeftModel), "LoRA failed. Please provide --lora_target_modules explicitly." | |
if resume_from_checkpoint: | |
# Check the available weights and load them | |
checkpoint_name = os.path.join( | |
resume_from_checkpoint, "pytorch_model.bin" | |
) # Full checkpoint | |
if not os.path.exists(checkpoint_name): | |
checkpoint_name = os.path.join( | |
resume_from_checkpoint, "adapter_model.bin" | |
) # only LoRA model - LoRA config above has to fit | |
resume_from_checkpoint = False # So the trainer won't try loading its state | |
# The two files above have a different name depending on how they were saved, but are actually the same. | |
if os.path.exists(checkpoint_name): | |
log(f"Restarting from {checkpoint_name}") | |
adapters_weights = torch.load(checkpoint_name) | |
set_peft_model_state_dict(model, adapters_weights) | |
else: | |
log(f"Checkpoint {checkpoint_name} not found") | |
print(model) | |
try: | |
# only for PeftModel | |
model.print_trainable_parameters() # Be more transparent about the % of trainable params. | |
except: | |
pass | |
metrics = {} | |
for name in supported_metrics: | |
if name in val_metrics: | |
import evaluate # Causes hang for 'python generate.py' on dual 4090 if imported early, 100% reproducible | |
metrics[name] = evaluate.load(name) | |
log("Using Validation Metrics: %s" % str(list(metrics.keys()))) | |
log("Supported Metrics: %s" % supported_metrics) | |
if val_set_size is None: | |
if len(metrics) == 0: | |
val_set_size = 1000 | |
else: | |
val_set_size = 100 | |
log("Auto set val_set_size %s" % val_set_size) | |
elif val_set_size < 1.0 and val_set_size != 0: | |
raise RuntimeError("Fractional validation size not supported.") | |
from datasets import load_dataset, concatenate_datasets | |
if valid_path: | |
data = load_dataset("json", data_files={"train": data_path, "valid": valid_path}) | |
else: | |
if "json" in data_path: | |
data = load_dataset("json", data_files={"train": data_path}) | |
else: | |
data = load_dataset(data_path) | |
data = data.rename_columns(data_col_dict or {}) | |
valid_data = None | |
train_data_mix_in = None | |
valid_data_mix_in = None | |
if data_mix_in_path and data_mix_in_factor > 0: | |
# get mix-in training/validation data - to keep model "sane" | |
num_rows = data["train"].num_rows | |
log("Loading mix-in dataset: %s" % data_mix_in_path) | |
if "json" in data_mix_in_path: | |
data_mix_in = load_dataset("json", data_files={"train": data_mix_in_path})["train"] | |
else: | |
data_mix_in = load_dataset(data_mix_in_path)["train"] # can be large | |
data_mix_in = data_mix_in.rename_columns(data_mix_in_col_dict or {}) | |
mix_in_rows = int(num_rows * data_mix_in_factor) | |
if mix_in_rows > data_mix_in.num_rows: | |
# duplicate rows if mix-in is smaller than required | |
log("Duplicating mixin to compensate for its size for training size and mixin fraction") | |
data_mix_in = concatenate_datasets([data_mix_in] * int(np.ceil(mix_in_rows / data_mix_in.num_rows))) | |
# only get as much as we need to balance | |
valid_size = min(data_mix_in.num_rows // 2, val_set_size or 0) | |
train_size = max(1, min(data_mix_in.num_rows - valid_size, mix_in_rows)) | |
mixin_small = data_mix_in.train_test_split( | |
test_size=train_size + valid_size, | |
shuffle=True, seed=np.random.randint(10000), | |
)["test"] | |
if valid_size: | |
mixin_train_test = mixin_small.train_test_split( | |
test_size=valid_size, shuffle=False, | |
) | |
train_data_mix_in = mixin_train_test["train"] | |
valid_data_mix_in = mixin_train_test["test"] | |
else: | |
train_data_mix_in = mixin_small | |
if "prompt_type" not in train_data_mix_in.column_names: | |
train_data_mix_in = train_data_mix_in.add_column( | |
"prompt_type", | |
[data_mix_in_prompt_type] * train_data_mix_in.num_rows, | |
) | |
log("Added prompt type %s to mix-in training data" % data_mix_in_prompt_type) | |
if valid_data_mix_in and "prompt_type" not in valid_data_mix_in.column_names: | |
valid_data_mix_in = valid_data_mix_in.add_column( | |
"prompt_type", | |
[data_mix_in_prompt_type] * valid_data_mix_in.num_rows, | |
) | |
log("Added prompt type %s to mix-in validation data" % data_mix_in_prompt_type) | |
log("Created mix-in data:\nTrain %s\nValid %s" % (train_data_mix_in, valid_data_mix_in)) | |
# get our own training/validation data - for fine-tuning | |
if val_set_size > 0 and not valid_path and not data_mix_in_path: | |
# create valid split from train | |
train_val = data["train"].train_test_split( | |
test_size=val_set_size, shuffle=True, seed=42 | |
) | |
train_data = train_val["train"] | |
valid_data = train_val["test"] | |
else: | |
train_data = data["train"] | |
if valid_path: | |
# use given valid split, has priority over data_mix_in_path | |
valid_data = data["valid"] | |
if "prompt_type" not in train_data.column_names: | |
train_data = train_data.add_column( | |
"prompt_type", | |
[prompt_type] * train_data.num_rows, | |
) | |
log("Added prompt type %s to training data" % prompt_type) | |
if valid_data and "prompt_type" not in valid_data.column_names: | |
valid_data = valid_data.add_column( | |
"prompt_type", | |
[prompt_type] * valid_data.num_rows, | |
) | |
log("Added prompt type %s to validation data" % prompt_type) | |
assert train_data is not None | |
generate_and_tokenize_prompt_fun = partial(generate_and_tokenize_prompt, prompt_type=prompt_type, | |
train_on_inputs=train_on_inputs, add_eos_token=add_eos_token, | |
cutoff_len=cutoff_len, tokenizer=tokenizer) | |
# shuffle and tokenize data | |
if train_data_mix_in: | |
train_data = concatenate_datasets([train_data, train_data_mix_in]) | |
log("Tokenizing %s training rows" % train_data.num_rows) | |
train_data = train_data.shuffle().map(generate_and_tokenize_prompt_fun, | |
num_proc=os.cpu_count() // torch.cuda.device_count()) | |
if drop_truncations: | |
log("avoid keeping truncated cases to avoid contaminating model with truncation cases. Original size: %s" % train_data.num_rows) | |
prune_long_sequences_func = partial(prune_long_sequences, cutoff_len=cutoff_len) | |
train_data = train_data.filter(prune_long_sequences_func, num_proc=os.cpu_count() // torch.cuda.device_count()) | |
log("avoid keeping truncated cases to avoid contaminating model with truncation cases. New size: %s" % train_data.num_rows) | |
train_set_size = len(train_data) | |
if valid_data and valid_data_mix_in: | |
valid_data = concatenate_datasets([valid_data, valid_data_mix_in]) | |
elif valid_data_mix_in: | |
valid_data = valid_data_mix_in | |
if valid_data: | |
log("Tokenizing %s validation rows" % valid_data.num_rows) | |
valid_data = valid_data.shuffle().map(generate_and_tokenize_prompt_fun, | |
num_proc=os.cpu_count() // torch.cuda.device_count()) | |
val_set_size = len(valid_data) | |
else: | |
val_set_size = 0 | |
log("Final fine-tuning data:\nTrain %s\nValid %s" % (train_data, valid_data)) | |
sample_row_dict = train_data[:1] | |
del sample_row_dict['input_ids'] | |
del sample_row_dict['attention_mask'] | |
del sample_row_dict['labels'] | |
log("Sample input: %s" % sample_row_dict) | |
try: | |
import neptune | |
from transformers.integrations import NeptuneCallback | |
neptune_run = neptune.init_run( | |
source_files=[], | |
) | |
log("Connected to Neptune.") | |
except ImportError: | |
neptune_run = None | |
log("Please pip install neptune for tracking.") | |
except neptune.exceptions.NeptuneMissingApiTokenException: | |
neptune_run = None | |
os.environ["NEPTUNE_MODE"] = 'debug' | |
log("No neptune configured, set NEPTUNE_API_TOKEN env var.") | |
if neptune_run: | |
neptune_callback = NeptuneCallback(run=neptune_run) | |
callbacks = [neptune_callback] | |
else: | |
from transformers.integrations import TensorBoardCallback, is_tensorboard_available | |
if is_tensorboard_available: | |
# tensorboard --logdir=runs/ | |
from torch.utils.tensorboard import SummaryWriter | |
tb_writer = SummaryWriter() | |
callbacks = [TensorBoardCallback(tb_writer=tb_writer)] | |
else: | |
callbacks = [] | |
expected_steps = (train_set_size * num_epochs) // batch_size | |
if eval_steps is None and eval_epochs is None: | |
# 20 evaluations for a run | |
eval_steps = max(1, int(expected_steps / 20)) | |
log("Auto set eval_steps to %s out of %s total training steps" % (eval_steps, expected_steps)) | |
elif eval_steps is None and eval_epochs is not None: | |
eval_steps = max(1, int(expected_steps * eval_epochs / num_epochs)) | |
log("Auto converted eval_epochs=%s to eval_steps %s" | |
" out of %s total training steps" % (eval_epochs, eval_steps, expected_steps)) | |
if save_steps is None: | |
save_steps = eval_steps | |
log("Auto step save_steps to %s" % save_steps) | |
elif save_steps > eval_steps: | |
# save steps must be round multiple of eval_steps | |
save_steps0 = save_steps | |
save_steps = max(1, (save_steps // eval_steps)) * eval_steps | |
if save_steps0 != save_steps: | |
log("Auto converted save_steps from %s to %s" % (save_steps0, save_steps)) | |
def compute_metrics(eval_preds): | |
# e.g. see: https://huggingface.co/docs/transformers/v4.25.1/en/tasks/translation#evaluate | |
inputs = eval_preds.inputs | |
label_ids = eval_preds.label_ids | |
predictions = eval_preds.predictions | |
# inputs = np.where(inputs != -100, inputs, tokenizer.pad_token_id) | |
# decoded_inputs = tokenizer.batch_decode(inputs, skip_special_tokens=True) | |
# decoded_inputs = [pred.strip() for pred in decoded_inputs] | |
label_ids = np.where(label_ids != -100, label_ids, tokenizer.pad_token_id) | |
# tokenizer behavior like generate time | |
decoded_labels = tokenizer.batch_decode(label_ids, skip_special_tokens=True, | |
clean_up_tokenization_spaces=True) | |
decoded_labels = [pred.strip() for pred in decoded_labels] | |
predictions = np.argmax(predictions, -1) | |
predictions = np.where(predictions != -100, predictions, tokenizer.pad_token_id) | |
# tokenizer behavior like generate time | |
decoded_predictions = tokenizer.batch_decode(predictions, skip_special_tokens=True, | |
clean_up_tokenization_spaces=True) | |
decoded_predictions = [pred.strip() for pred in decoded_predictions] | |
result = {} | |
for metric in metrics.values(): | |
result1 = metric.compute(predictions=decoded_predictions, references=decoded_labels) | |
# get rid of lists, for precision etc., for now | |
numeric_results = {k: v for k, v in result1.items() if isinstance(v, (int, float))} | |
result.update(numeric_results) | |
return result | |
# the callback that computes metrics of interest | |
if val_metrics: | |
trainer_kwargs = dict(compute_metrics=compute_metrics) | |
else: | |
trainer_kwargs = dict() | |
import transformers | |
trainer = transformers.Trainer( | |
model=model, | |
tokenizer=tokenizer, | |
train_dataset=train_data, | |
eval_dataset=valid_data, | |
# FIXME: might need Seq2SeqTrainingArguments for some models | |
args=transformers.TrainingArguments( | |
per_device_train_batch_size=micro_batch_size, | |
per_device_eval_batch_size=1, | |
eval_accumulation_steps=10, | |
# predict_with_generate=True, # SEQ2SEQ only | |
include_inputs_for_metrics=True, | |
gradient_accumulation_steps=gradient_accumulation_steps, | |
warmup_steps=warmup_steps, | |
num_train_epochs=num_epochs, | |
learning_rate=learning_rate, | |
gradient_checkpointing=gradient_checkpointing, | |
fp16=fp16, | |
# cosnider 8-bit adam: https://huggingface.co/docs/transformers/v4.18.0/en/performance#8bit-adam | |
optim="adamw_torch", # consider "adafactor" to save memory | |
logging_steps=logging_steps, | |
logging_strategy="steps", | |
evaluation_strategy="steps" if val_set_size > 0 else "no", | |
save_strategy="steps", | |
eval_steps=eval_steps if val_set_size > 0 else None, | |
save_steps=save_steps, | |
output_dir=output_dir, | |
save_total_limit=save_total_limit, | |
load_best_model_at_end=True if val_set_size > 0 else False, | |
ddp_find_unused_parameters=False if ddp else None, | |
group_by_length=group_by_length, | |
# fsdp="shard_grad_op auto_wrap" if gpus > 1 and not ddp else None, | |
# fsdp_min_num_params=20000 if gpus > 1 and not ddp else None, | |
report_to='tensorboard' if not neptune_run else 'neptune', | |
), | |
data_collator=transformers.DataCollatorForSeq2Seq( | |
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True | |
), | |
callbacks=callbacks, | |
**trainer_kwargs, | |
) | |
model.config.use_cache = False | |
old_state_dict = model.state_dict | |
from peft import get_peft_model_state_dict | |
model.state_dict = ( | |
lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict()) | |
).__get__(model, type(model)) | |
if torch.__version__ >= "2" and sys.platform != "win32": | |
model = torch.compile(model) | |
# WIP (not generally replacing layers until pytorch 2.1) | |
if not llama_flash_attn: | |
torch.backends.cuda.enable_flash_sdp(True) | |
if gpus > 1 and not ddp: | |
assert trainer.is_model_parallel | |
else: | |
assert not trainer.is_model_parallel | |
trainer.train(resume_from_checkpoint=resume_from_checkpoint) | |
model.save_pretrained(output_dir) | |
log("\n If there's a warning about missing keys above, please disregard :)") | |
def tokenize(prompt, tokenizer, cutoff_len, add_eos_token=False): | |
# there's probably a way to do this with the tokenizer settings | |
# but again, gotta move fast | |
result = tokenizer( | |
prompt, | |
truncation=True, | |
max_length=cutoff_len, | |
padding=False, | |
return_tensors=None, | |
) | |
if ( | |
result["input_ids"][-1] != tokenizer.eos_token_id | |
and len(result["input_ids"]) < cutoff_len | |
and add_eos_token | |
): | |
result["input_ids"].append(tokenizer.eos_token_id) | |
result["attention_mask"].append(1) | |
result["labels"] = result["input_ids"].copy() | |
return result | |
def prune_long_sequences(data_point, cutoff_len=None): | |
""" | |
Prune if too long for tokenizer, so truncation doesn't lead training to learn from truncated language | |
:param data_point: | |
:param cutoff_len: | |
:return: | |
""" | |
assert cutoff_len is not None | |
return len(data_point['input_ids']) < cutoff_len | |
def generate_and_tokenize_prompt(data_point, prompt_type=None, train_on_inputs=False, add_eos_token=False, | |
cutoff_len=None, tokenizer=None): | |
assert prompt_type is not None | |
assert cutoff_len is not None | |
assert tokenizer is not None | |
prompt_dict = '' # only for custom prompt_type | |
assert prompt_type != PromptType.custom.name, "custom not setup for finetune" | |
full_prompt, _, _, _ = generate_prompt(data_point, prompt_type, prompt_dict, False, False) | |
tokenized_full_prompt = tokenize(full_prompt, tokenizer, cutoff_len, add_eos_token=add_eos_token) | |
if not train_on_inputs: | |
user_prompt, _, _, _ = generate_prompt({**data_point, "output": ""}, prompt_type, prompt_dict, False, False) | |
tokenized_user_prompt = tokenize(user_prompt, tokenizer, cutoff_len, add_eos_token=add_eos_token) | |
user_prompt_len = len(tokenized_user_prompt["input_ids"]) | |
if add_eos_token: | |
user_prompt_len -= 1 | |
# ignore_index=-100 ensures torch/tf don't include padding token id in CrossEntropyLoss | |
tokenized_full_prompt["labels"] = [ | |
-100 | |
] * user_prompt_len + tokenized_full_prompt["labels"][ | |
user_prompt_len: | |
] # could be sped up, probably | |
return tokenized_full_prompt | |
def test_debug(): | |
fire.Fire(train) | |
if __name__ == "__main__": | |
CONFIG = "NCCL_P2P_LEVEL=LOC WORLD_SIZE=5 torchrun --nnodes=5 --master_addr=10.10.10.2 --master_port=1111 --nproc_per_node=1" | |
CMD = "finetune.py --data_path=config.json --num_epochs=1 --base_model=decapoda-research/llama-13b-hf" | |
log(f""" | |
Example runs on 4 GPUs: | |
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 finetune.py --base_model='decapoda-research/llama-7b-hf' --data_path=data/config.json --run_id=0 &> 0.log | |
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 finetune.py --base_model='decapoda-research/llama-30b-hf' --data_path=data/config.json --batch_size=16 --micro_batch_size=1 --run_id=1 --save_code=True &> 1.log | |
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 finetune.py --base_model='EleutherAI/gpt-j-6B' --data_path=data/config.json --run_id=2 &> 2.log | |
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 finetune.py --base_model='EleutherAI/gpt-neox-20b' --data_path=data/config.json --run_id=8 --batch_size=16 --micro_batch_size=4 &> 8.log | |
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 finetune.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --data_path=data/config.json --prompt_type='dai_faq' --run_id=13 --batch_size=16 --micro_batch_size=4 --num_epochs=100 --val_set_size=0 data_mix_in_path='' &> 13.log | |
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 finetune.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --data_path=data/config.json --run_id=28 --batch_size=16 --micro_batch_size=4 --num_epochs=8 --val_set_size=0 --data_mix_in_factor=0.1 --data_mix_in_prompt_type='human_bot' --save_code=True --cutoff_len=512 &> 28.log | |
All metrics: | |
CUDA_VISIBLE_DEVICES= finetune.py --data_mix_in_factor=0 --eval_steps=100 --warmup_steps=2 --val_set_size=100 --val_metrics="['bleu', 'rouge', 'sacrebleu', 'meteor']" | |
# Fine-tune 20B on 24GB GPUs across 3 nodes with 3+2+2 GPUs | |
rippa> | |
NCCL_P2P_LEVEL=LOC WORLD_SIZE=7 CUDA_VISIBLE_DEVICES="0,1,2" torchrun --node_rank 0 --nproc_per_node=3 --master_port=1234 --nnodes=3 --master_addr=10.10.10.2 finetune.py --data_path=merged_shuffled_OIG_87f6a1e788.json --micro_batch_size=1 --batch_size=7 --cutoff_len=512 --run_id=17 &>log.17.rank0 | |
ova> | |
NCCL_P2P_LEVEL=LOC WORLD_SIZE=7 CUDA_VISIBLE_DEVICES="0,1" torchrun --node_rank 1 --nproc_per_node=2 --master_port=1234 --nnodes=3 --master_addr=10.10.10.2 finetune.py --data_path=merged_shuffled_OIG_87f6a1e788.json --micro_batch_size=1 --batch_size=7 --cutoff_len=512 --run_id=17 &>log.17.rank1 | |
timemachine> | |
NCCL_P2P_LEVEL=LOC WORLD_SIZE=7 CUDA_VISIBLE_DEVICES="0,1" torchrun --node_rank 2 --nproc_per_node=2 --master_port=1234 --nnodes=3 --master_addr=10.10.10.2 finetune.py --data_path=merged_shuffled_OIG_87f6a1e788.json --micro_batch_size=1 --batch_size=7 --cutoff_len=512 --run_id=17 &>log.17.rank2 | |
""", flush=True) | |
if os.environ.get("LOCAL_RANK") is None: | |
# then not using torchrun, so can't do distributed, ensure CVD set | |
assert os.environ.get( | |
"CUDA_VISIBLE_DEVICES") is not None, "Run python script using: torchrun finetune.py OR set CUDA_VISIBLE_DEVICES to single GPU" | |
fire.Fire(train) | |