pseudotensor commited on
Commit
82934e3
·
1 Parent(s): 5a3fd3e

Update with h2oGPT hash 6e04392f877303e49bab527df50aac557f4b9d14

Browse files
client_test.py CHANGED
@@ -100,7 +100,7 @@ def get_args(prompt, prompt_type, chat=False, stream_output=False,
100
  chunk_size=512,
101
  document_choice=[DocumentChoices.All_Relevant.name],
102
  )
103
- from gen import eval_func_param_names
104
  assert len(set(eval_func_param_names).difference(set(list(kwargs.keys())))) == 0
105
  if chat:
106
  # add chatbot output on end. Assumes serialize=False
 
100
  chunk_size=512,
101
  document_choice=[DocumentChoices.All_Relevant.name],
102
  )
103
+ from evaluate_params import eval_func_param_names
104
  assert len(set(eval_func_param_names).difference(set(list(kwargs.keys())))) == 0
105
  if chat:
106
  # add chatbot output on end. Assumes serialize=False
gen.py CHANGED
@@ -20,6 +20,8 @@ from urllib3.exceptions import ConnectTimeoutError, MaxRetryError, ConnectionErr
20
  from requests.exceptions import ConnectionError as ConnectionError2
21
  from requests.exceptions import ReadTimeout as ReadTimeout2
22
 
 
 
23
  if os.path.dirname(os.path.abspath(__file__)) not in sys.path:
24
  sys.path.append(os.path.dirname(os.path.abspath(__file__)))
25
 
@@ -48,8 +50,6 @@ from transformers import GenerationConfig, AutoModel, TextIteratorStreamer
48
  from prompter import Prompter, inv_prompt_type_to_model_lower, non_hf_types, PromptType, get_prompt, generate_prompt
49
  from stopping import get_stopping
50
 
51
- eval_extra_columns = ['prompt', 'response', 'score']
52
-
53
  langchain_modes = [x.value for x in list(LangChainMode)]
54
 
55
  langchain_actions = [x.value for x in list(LangChainAction)]
@@ -144,7 +144,7 @@ def main(
144
  force_langchain_evaluate: bool = False,
145
  visible_langchain_modes: list = ['UserData', 'MyData'],
146
  # WIP:
147
- #visible_langchain_actions: list = langchain_actions.copy(),
148
  visible_langchain_actions: list = [LangChainAction.QUERY.value, LangChainAction.SUMMARIZE_MAP.value],
149
  document_choice: list = [DocumentChoices.All_Relevant.name],
150
  user_path: str = None,
@@ -354,6 +354,7 @@ def main(
354
  # assert not prompt_type, "Don't specify model_lock and prompt_type"
355
  # assert not prompt_dict, "Don't specify model_lock and prompt_dict"
356
 
 
357
  is_hf = bool(int(os.getenv("HUGGINGFACE_SPACES", '0')))
358
  is_gpth2oai = bool(int(os.getenv("GPT_H2O_AI", '0')))
359
  is_public = is_hf or is_gpth2oai # multi-user case with fixed model and disclaimer
@@ -361,6 +362,8 @@ def main(
361
  memory_restriction_level = 2 if is_hf else 0 # 2 assumes run on 24GB consumer GPU
362
  else:
363
  assert 0 <= memory_restriction_level <= 3, "Bad memory_restriction_level=%s" % memory_restriction_level
 
 
364
  admin_pass = os.getenv("ADMIN_PASS")
365
  # will sometimes appear in UI or sometimes actual generation, but maybe better than empty result
366
  # but becomes unrecoverable sometimes if raise, so just be silent for now
@@ -1188,52 +1191,6 @@ def get_score_model(score_model: str = None,
1188
  return smodel, stokenizer, sdevice
1189
 
1190
 
1191
- no_default_param_names = [
1192
- 'instruction',
1193
- 'iinput',
1194
- 'context',
1195
- 'instruction_nochat',
1196
- 'iinput_nochat',
1197
- ]
1198
-
1199
- gen_hyper = ['temperature',
1200
- 'top_p',
1201
- 'top_k',
1202
- 'num_beams',
1203
- 'max_new_tokens',
1204
- 'min_new_tokens',
1205
- 'early_stopping',
1206
- 'max_time',
1207
- 'repetition_penalty',
1208
- 'num_return_sequences',
1209
- 'do_sample',
1210
- ]
1211
-
1212
- eval_func_param_names = ['instruction',
1213
- 'iinput',
1214
- 'context',
1215
- 'stream_output',
1216
- 'prompt_type',
1217
- 'prompt_dict'] + \
1218
- gen_hyper + \
1219
- ['chat',
1220
- 'instruction_nochat',
1221
- 'iinput_nochat',
1222
- 'langchain_mode',
1223
- 'langchain_action',
1224
- 'top_k_docs',
1225
- 'chunk',
1226
- 'chunk_size',
1227
- 'document_choice',
1228
- ]
1229
-
1230
- # form evaluate defaults for submit_nochat_api
1231
- eval_func_param_names_defaults = eval_func_param_names.copy()
1232
- for k in no_default_param_names:
1233
- if k in eval_func_param_names_defaults:
1234
- eval_func_param_names_defaults.remove(k)
1235
-
1236
-
1237
  def evaluate(
1238
  model_state,
1239
  my_db_state,
 
20
  from requests.exceptions import ConnectionError as ConnectionError2
21
  from requests.exceptions import ReadTimeout as ReadTimeout2
22
 
23
+ from evaluate_params import eval_func_param_names, no_default_param_names
24
+
25
  if os.path.dirname(os.path.abspath(__file__)) not in sys.path:
26
  sys.path.append(os.path.dirname(os.path.abspath(__file__)))
27
 
 
50
  from prompter import Prompter, inv_prompt_type_to_model_lower, non_hf_types, PromptType, get_prompt, generate_prompt
51
  from stopping import get_stopping
52
 
 
 
53
  langchain_modes = [x.value for x in list(LangChainMode)]
54
 
55
  langchain_actions = [x.value for x in list(LangChainAction)]
 
144
  force_langchain_evaluate: bool = False,
145
  visible_langchain_modes: list = ['UserData', 'MyData'],
146
  # WIP:
147
+ # visible_langchain_actions: list = langchain_actions.copy(),
148
  visible_langchain_actions: list = [LangChainAction.QUERY.value, LangChainAction.SUMMARIZE_MAP.value],
149
  document_choice: list = [DocumentChoices.All_Relevant.name],
150
  user_path: str = None,
 
354
  # assert not prompt_type, "Don't specify model_lock and prompt_type"
355
  # assert not prompt_dict, "Don't specify model_lock and prompt_dict"
356
 
357
+ n_jobs = int(os.getenv('n_jobs', str(n_jobs)))
358
  is_hf = bool(int(os.getenv("HUGGINGFACE_SPACES", '0')))
359
  is_gpth2oai = bool(int(os.getenv("GPT_H2O_AI", '0')))
360
  is_public = is_hf or is_gpth2oai # multi-user case with fixed model and disclaimer
 
362
  memory_restriction_level = 2 if is_hf else 0 # 2 assumes run on 24GB consumer GPU
363
  else:
364
  assert 0 <= memory_restriction_level <= 3, "Bad memory_restriction_level=%s" % memory_restriction_level
365
+ if is_public and os.getenv('n_jobs') is None:
366
+ n_jobs = max(1, min(os.cpu_count() // 2, 8))
367
  admin_pass = os.getenv("ADMIN_PASS")
368
  # will sometimes appear in UI or sometimes actual generation, but maybe better than empty result
369
  # but becomes unrecoverable sometimes if raise, so just be silent for now
 
1191
  return smodel, stokenizer, sdevice
1192
 
1193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1194
  def evaluate(
1195
  model_state,
1196
  my_db_state,
gpt_langchain.py CHANGED
@@ -1182,7 +1182,7 @@ def file_to_doc(file, base_path=None, verbose=False, fail_any_exception=False,
1182
  # so just extract in path where
1183
  zip_ref.extractall(base_path)
1184
  # recurse
1185
- doc1 = path_to_docs(base_path, verbose=verbose, fail_any_exception=fail_any_exception)
1186
  else:
1187
  raise RuntimeError("No file handler for %s" % os.path.basename(file))
1188
 
 
1182
  # so just extract in path where
1183
  zip_ref.extractall(base_path)
1184
  # recurse
1185
+ doc1 = path_to_docs(base_path, verbose=verbose, fail_any_exception=fail_any_exception, n_jobs=n_jobs)
1186
  else:
1187
  raise RuntimeError("No file handler for %s" % os.path.basename(file))
1188
 
gradio_runner.py CHANGED
@@ -57,9 +57,9 @@ from prompter import prompt_type_to_model_name, prompt_types_strings, inv_prompt
57
  get_prompt
58
  from utils import get_githash, flatten_list, zip_data, s3up, clear_torch_cache, get_torch_allocated, system_info_print, \
59
  ping, get_short_name, get_url, makedirs, get_kwargs, remove, system_info, ping_gpu
60
- from gen import get_model, languages_covered, evaluate, eval_func_param_names, score_qa, langchain_modes, \
61
- inputs_kwargs_list, scratch_base_dir, no_default_param_names, \
62
- eval_func_param_names_defaults, get_max_max_new_tokens, get_minmax_top_k_docs, history_to_context, langchain_actions
63
 
64
  from apscheduler.schedulers.background import BackgroundScheduler
65
 
@@ -307,7 +307,7 @@ def go_gradio(**kwargs):
307
 
308
  col_chat = gr.Column(visible=kwargs['chat'])
309
  with col_chat:
310
- instruction, submit, stop_btn = make_prompt_form(kwargs)
311
  text_output, text_output2, text_outputs = make_chatbots(output_label0, output_label0_model2,
312
  **kwargs)
313
 
@@ -756,6 +756,7 @@ def go_gradio(**kwargs):
756
  caption_loader=caption_loader,
757
  verbose=kwargs['verbose'],
758
  user_path=kwargs['user_path'],
 
759
  )
760
  add_file_outputs = [fileup_output, langchain_mode, add_to_shared_db_btn, add_to_my_db_btn]
761
  add_file_kwargs = dict(fn=update_user_db_func,
@@ -834,6 +835,7 @@ def go_gradio(**kwargs):
834
  caption_loader=caption_loader,
835
  verbose=kwargs['verbose'],
836
  user_path=kwargs['user_path'],
 
837
  )
838
 
839
  add_my_file_outputs = [fileup_output, langchain_mode, my_db_state, add_to_shared_db_btn, add_to_my_db_btn]
@@ -2269,7 +2271,8 @@ def _update_user_db(file, db1, x, y, chunk, chunk_size, dbs=None, db_type=None,
2269
  captions_model=None,
2270
  enable_ocr=None,
2271
  verbose=None,
2272
- is_url=None, is_txt=None):
 
2273
  assert use_openai_embedding is not None
2274
  assert hf_embedding_model is not None
2275
  assert caption_loader is not None
@@ -2310,6 +2313,7 @@ def _update_user_db(file, db1, x, y, chunk, chunk_size, dbs=None, db_type=None,
2310
  print("Adding %s" % file, flush=True)
2311
  sources = path_to_docs(file if not is_url and not is_txt else None,
2312
  verbose=verbose,
 
2313
  chunk=chunk, chunk_size=chunk_size,
2314
  url=file if is_url else None,
2315
  text=file if is_txt else None,
 
57
  get_prompt
58
  from utils import get_githash, flatten_list, zip_data, s3up, clear_torch_cache, get_torch_allocated, system_info_print, \
59
  ping, get_short_name, get_url, makedirs, get_kwargs, remove, system_info, ping_gpu
60
+ from gen import get_model, languages_covered, evaluate, score_qa, langchain_modes, inputs_kwargs_list, scratch_base_dir, \
61
+ get_max_max_new_tokens, get_minmax_top_k_docs, history_to_context, langchain_actions
62
+ from evaluate_params import eval_func_param_names, no_default_param_names, eval_func_param_names_defaults
63
 
64
  from apscheduler.schedulers.background import BackgroundScheduler
65
 
 
307
 
308
  col_chat = gr.Column(visible=kwargs['chat'])
309
  with col_chat:
310
+ instruction, submit, stop_btn = make_prompt_form(kwargs, LangChainMode)
311
  text_output, text_output2, text_outputs = make_chatbots(output_label0, output_label0_model2,
312
  **kwargs)
313
 
 
756
  caption_loader=caption_loader,
757
  verbose=kwargs['verbose'],
758
  user_path=kwargs['user_path'],
759
+ n_jobs=kwargs['n_jobs'],
760
  )
761
  add_file_outputs = [fileup_output, langchain_mode, add_to_shared_db_btn, add_to_my_db_btn]
762
  add_file_kwargs = dict(fn=update_user_db_func,
 
835
  caption_loader=caption_loader,
836
  verbose=kwargs['verbose'],
837
  user_path=kwargs['user_path'],
838
+ n_jobs=kwargs['n_jobs'],
839
  )
840
 
841
  add_my_file_outputs = [fileup_output, langchain_mode, my_db_state, add_to_shared_db_btn, add_to_my_db_btn]
 
2271
  captions_model=None,
2272
  enable_ocr=None,
2273
  verbose=None,
2274
+ is_url=None, is_txt=None,
2275
+ n_jobs=-1):
2276
  assert use_openai_embedding is not None
2277
  assert hf_embedding_model is not None
2278
  assert caption_loader is not None
 
2313
  print("Adding %s" % file, flush=True)
2314
  sources = path_to_docs(file if not is_url and not is_txt else None,
2315
  verbose=verbose,
2316
+ n_jobs=n_jobs,
2317
  chunk=chunk, chunk_size=chunk_size,
2318
  url=file if is_url else None,
2319
  text=file if is_txt else None,
gradio_utils/__pycache__/grclient.cpython-310.pyc CHANGED
Binary files a/gradio_utils/__pycache__/grclient.cpython-310.pyc and b/gradio_utils/__pycache__/grclient.cpython-310.pyc differ
 
gradio_utils/__pycache__/prompt_form.cpython-310.pyc CHANGED
Binary files a/gradio_utils/__pycache__/prompt_form.cpython-310.pyc and b/gradio_utils/__pycache__/prompt_form.cpython-310.pyc differ
 
gradio_utils/prompt_form.py CHANGED
@@ -3,8 +3,6 @@ import math
3
 
4
  import gradio as gr
5
 
6
- from enums import LangChainMode
7
-
8
 
9
  def make_chatbots(output_label0, output_label0_model2, **kwargs):
10
  text_outputs = []
@@ -97,7 +95,7 @@ def make_chatbots(output_label0, output_label0_model2, **kwargs):
97
  return text_output, text_output2, text_outputs
98
 
99
 
100
- def make_prompt_form(kwargs):
101
  if kwargs['langchain_mode'] != LangChainMode.DISABLED.value:
102
  extra_prompt_form = ". For summarization, empty submission uses first top_k_docs documents."
103
  else:
 
3
 
4
  import gradio as gr
5
 
 
 
6
 
7
  def make_chatbots(output_label0, output_label0_model2, **kwargs):
8
  text_outputs = []
 
95
  return text_output, text_output2, text_outputs
96
 
97
 
98
+ def make_prompt_form(kwargs, LangChainMode):
99
  if kwargs['langchain_mode'] != LangChainMode.DISABLED.value:
100
  extra_prompt_form = ". For summarization, empty submission uses first top_k_docs documents."
101
  else: