diff --git "a/app.py" "b/app.py" deleted file mode 100644--- "a/app.py" +++ /dev/null @@ -1,1994 +0,0 @@ -import functools -import inspect -import sys -import os -import traceback -import typing -from utils import set_seed, flatten_list, clear_torch_cache, system_info_print, zip_data, save_generate_output, s3up - -SEED = 1236 -set_seed(SEED) - -os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1' -from typing import Union -import numpy as np -import pandas as pd - -import fire -import torch -from peft import PeftModel -from transformers import GenerationConfig, StoppingCriteriaList, AutoModel -from accelerate import init_empty_weights, infer_auto_device_map - -from prompter import Prompter - -from finetune import get_loaders, example_data_points, generate_prompt, get_githash, prompt_types_strings, \ - human, bot, prompt_type_to_model_name, inv_prompt_type_to_model_lower -from stopping import CallbackToGenerator, Stream, StoppingCriteriaSub - -is_hf = bool(os.getenv("HUGGINGFACE_SPACES")) -is_gpth2oai = bool(os.getenv("GPT_H2O_AI")) -is_public = is_hf or is_gpth2oai # multi-user case with fixed model and disclaimer -is_low_mem = is_hf # assumes run on 24GB consumer GPU -admin_pass = os.getenv("ADMIN_PASS") -# will sometimes appear in UI or sometimes actual generation, but maybe better than empty result -raise_generate_gpu_exceptions = True - -eval_extra_columns = ['prompt', 'response', 'score'] - -def main( - load_8bit: bool = False, - load_half: bool = True, - infer_devices: bool = True, - base_model: str = '', - tokenizer_base_model: str = '', - lora_weights: str = "", - gpu_id: int = 0, # if infer_devices = True and gpu_id != -1 - - prompt_type: Union[int, str] = None, - # input to generation - temperature: float = None, - top_p: float = None, - top_k: int = None, - num_beams: int = None, - repetition_penalty: float = None, - num_return_sequences: int = None, - do_sample: bool = None, - max_new_tokens: int = None, - min_new_tokens: int = None, - early_stopping: Union[bool, str] = None, - max_time: float = None, - - llama_type: bool = None, - debug: bool = False, - save_dir: str = None, - share: bool = True, - local_files_only: bool = False, - resume_download: bool = True, - use_auth_token: Union[str, bool] = False, # True requires CLI did huggingface-cli login before running - - src_lang: str = "English", - tgt_lang: str = "Russian", - - gradio: bool = True, - gradio_avoid_processing_markdown: bool = False, - chat: bool = True, - chat_history: int = 4096, # character length of chat context/history - stream_output: bool = True, - show_examples: bool = None, - verbose: bool = False, - h2ocolors: bool = True, - height: int = 400, - show_lora: bool = True, - # set to True to load --base_model after client logs in, - # to be able to free GPU memory when model is swapped - login_mode_if_model0: bool = False, - block_gradio_exit: bool = True, - concurrency_count: int = 1, - api_open: bool = False, # don't let API skip queue - allow_api: bool = True, - - sanitize_user_prompt: bool = True, - sanitize_bot_response: bool = True, - - extra_model_options: typing.List[str] = [], - extra_lora_options: typing.List[str] = [], - - score_model: str = 'OpenAssistant/reward-model-deberta-v3-large-v2', - auto_score: bool = True, - - eval_sharegpt_prompts_only: int = 0, - eval_sharegpt_prompts_only_seed: int = 1234, - eval_sharegpt_as_output: bool = False, -): - # allow set token directly - use_auth_token = os.environ.get("HUGGINGFACE_API_TOKEN", use_auth_token) - - if is_public: - temperature = 0.4 - top_p = 0.85 - top_k = 70 - do_sample = True - if is_low_mem: - base_model = 'h2oai/h2ogpt-oasst1-512-12b' - load_8bit = True - else: - base_model = 'h2oai/h2ogpt-oasst1-512-20b' - if is_low_mem: - load_8bit = True - if is_hf: - # must override share if in spaces - share = False - save_dir = os.getenv('SAVE_DIR', save_dir) - score_model = os.getenv('SCORE_MODEL', score_model) - if score_model == 'None': - score_model = '' - concurrency_count = int(os.getenv('CONCURRENCY_COUNT', concurrency_count)) - api_open = bool(int(os.getenv('API_OPEN', api_open))) - allow_api = bool(int(os.getenv('ALLOW_API', allow_api))) - - # get defaults - model_lower = base_model.lower() - if not gradio: - # force, else not single response like want to look at - stream_output = False - # else prompt removal can mess up output - chat = False - - placeholder_instruction, placeholder_input, \ - stream_output, show_examples, \ - prompt_type, temperature, top_p, top_k, num_beams, \ - max_new_tokens, min_new_tokens, early_stopping, max_time, \ - repetition_penalty, num_return_sequences, \ - do_sample, \ - src_lang, tgt_lang, \ - examples, \ - task_info = \ - get_generate_params(model_lower, chat, - stream_output, show_examples, - prompt_type, temperature, top_p, top_k, num_beams, - max_new_tokens, min_new_tokens, early_stopping, max_time, - repetition_penalty, num_return_sequences, - do_sample, - ) - - if not gradio: - if eval_sharegpt_prompts_only > 0: - # override default examples with shareGPT ones for human-level eval purposes only - eval_filename = 'ShareGPT_V3_unfiltered_cleaned_split_no_imsorry.json' - if not os.path.isfile(eval_filename): - os.system( - 'wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/%s' % eval_filename) - import json - data = json.load(open(eval_filename, 'rt')) - # focus on data that starts with human, else likely chopped from other data - turn_start = 0 # odd in general - data = [x for x in data if len(x['conversations']) > turn_start + 1 and - x['conversations'][turn_start]['from'] == 'human' and - x['conversations'][turn_start + 1]['from'] == 'gpt'] - np.random.seed(eval_sharegpt_prompts_only_seed) - example1 = examples[-1] # pick reference example - examples = [] - responses = [] - for i in list(np.random.randint(0, len(data), size=eval_sharegpt_prompts_only)): - assert data[i]['conversations'][turn_start]['from'] == 'human' - instruction = data[i]['conversations'][turn_start]['value'] - assert data[i]['conversations'][turn_start + 1]['from'] == 'gpt' - output = data[i]['conversations'][turn_start + 1]['value'] - examplenew = example1.copy() - assert not chat, "No gradio must use chat=False, uses nochat instruct" - examplenew[eval_func_param_names.index('instruction_nochat')] = instruction - examplenew[eval_func_param_names.index('iinput_nochat')] = '' # no input - examplenew[eval_func_param_names.index('context')] = '' # no context - examples.append(examplenew) - responses.append(output) - - num_examples = len(examples) - scoring_path = 'scoring' - os.makedirs(scoring_path, exist_ok=True) - if eval_sharegpt_as_output: - used_base_model = 'gpt35' - used_lora_weights = '' - else: - used_base_model = str(base_model.split('/')[-1]) - used_lora_weights = str(lora_weights.split('/')[-1]) - eval_filename = "df_scores_%s_%s_%s_%s_%s_%s.parquet" % (num_examples, eval_sharegpt_prompts_only, - eval_sharegpt_prompts_only_seed, - eval_sharegpt_as_output, - used_base_model, - used_lora_weights) - eval_filename = os.path.join(scoring_path, eval_filename) - - with torch.device("cuda"): - # ensure was set right above before examples generated - assert not stream_output, "stream_output=True does not make sense with example loop" - import time - from functools import partial - - # get score model - smodel, stokenizer, sdevice = get_score_model(**locals()) - - if not eval_sharegpt_as_output: - model, tokenizer, device = get_model(**locals()) - model_state = [model, tokenizer, device, base_model] - fun = partial(evaluate, model_state, debug=debug, save_dir=save_dir) - else: - assert eval_sharegpt_prompts_only > 0 - - def get_response(*args, exi=0): - # assumes same ordering of examples and responses - yield responses[exi] - - fun = get_response - t0 = time.time() - score_dump = [] - - import matplotlib.pyplot as plt - - for exi, ex in enumerate(examples): - instruction = ex[eval_func_param_names.index('instruction_nochat')] - iinput = ex[eval_func_param_names.index('iinput_nochat')] - context = ex[eval_func_param_names.index('context')] - clear_torch_cache() - print("") - print("START" + "=" * 100) - print("Question: %s %s" % (instruction, ('input=%s' % iinput if iinput else ''))) - print("-" * 105) - # fun yields as generator, so have to iterate over it - # Also means likely do NOT want --stream_output=True, else would show all generations - for res in fun(*tuple(ex), exi=exi): - print(res) - if smodel: - score_with_prompt = False - if score_with_prompt: - data_point = dict(instruction=instruction, input=iinput, context=context) - prompter = Prompter(prompt_type, debug=debug, chat=chat, stream_output=stream_output) - prompt = prompter.generate_prompt(data_point) - else: - # just raw input and output - assert iinput in [None, ''] # should be no iinput - assert context in [None, ''] # should be no context - prompt = instruction - cutoff_len = 768 if is_low_mem else 2048 - inputs = stokenizer(prompt, res, - return_tensors="pt", - truncation=True, - max_length=cutoff_len) - try: - score = torch.sigmoid(smodel(**inputs).logits[0]).cpu().detach().numpy()[0] - except torch.cuda.OutOfMemoryError as e: - print("GPU OOM: question: %s answer: %s exception: %s" % (prompt, res, str(e)), flush=True) - traceback.print_exc() - score = 0.0 - clear_torch_cache() - except (Exception, RuntimeError) as e: - if 'Expected all tensors to be on the same device' in str(e) or \ - 'expected scalar type Half but found Float' in str(e) or \ - 'probability tensor contains either' in str(e) or \ - 'cublasLt ran into an error!' in str(e): - print("GPU error: question: %s answer: %s exception: %s" % (prompt, res, str(e)), - flush=True) - traceback.print_exc() - score = 0.0 - clear_torch_cache() - else: - raise - print("SCORE %s: %s" % (exi, score), flush=True) - score_dump.append(ex + [prompt, res, score]) - # dump every score in case abort - df_scores = pd.DataFrame(score_dump, - columns=eval_func_param_names + eval_extra_columns) - df_scores.to_parquet(eval_filename, index=False) - # plot histogram so far - plt.figure(figsize=(10, 10)) - plt.hist(df_scores['score'], bins=20) - score_avg = np.mean(df_scores['score']) - score_median = np.median(df_scores['score']) - plt.title("Score avg: %s median: %s" % (score_avg, score_median)) - plt.savefig(eval_filename.replace('.parquet', '.png')) - plt.close() - - print("END" + "=" * 102) - print("") - t2 = time.time() - print("Time taken so far: %.4f about %.4g per example" % (t2 - t0, (t2 - t0) / (1 + exi))) - t1 = time.time() - print("Total time taken: %.4f about %.4g per example" % (t1 - t0, (t1 - t0) / num_examples)) - return eval_filename - - if gradio: - go_gradio(**locals()) - - -def get_device(): - if torch.cuda.is_available(): - device = "cuda" - else: - raise RuntimeError("only cuda supported") - - return device - - -def get_non_lora_model(base_model, model_loader, load_half, model_kwargs, reward_type, - gpu_id=0, - use_auth_token=False): - """ - Ensure model gets on correct device - :param base_model: - :param model_loader: - :param load_half: - :param model_kwargs: - :param reward_type: - :param gpu_id: - :param use_auth_token: - :return: - """ - with init_empty_weights(): - from transformers import AutoConfig - config = AutoConfig.from_pretrained(base_model, use_auth_token=use_auth_token) - model = AutoModel.from_config( - config, - ) - - # NOTE: Can specify max_memory={0: max_mem, 1: max_mem}, to shard model - # NOTE: Some models require avoiding sharding some layers, - # then would pass no_split_module_classes and give list of those layers. - device_map = infer_auto_device_map( - model, - dtype=torch.float16 if load_half else torch.float32, - ) - if hasattr(model, 'model'): - device_map_model = infer_auto_device_map( - model.model, - dtype=torch.float16 if load_half else torch.float32, - ) - device_map.update(device_map_model) - print('device_map: %s' % device_map, flush=True) - - if gpu_id >= 0: - # FIXME: If really distributes model, tend to get things like: ValueError: gpt_neox.embed_in.weight doesn't have any device set. - # So avoid for now, just put on first GPU, unless score_model, put on last - n_gpus = torch.cuda.device_count() - if reward_type: - device_map = {'': n_gpus - 1} - else: - device_map = {'': min(n_gpus - 1, gpu_id)} - - load_in_8bit = model_kwargs.get('load_in_8bit', False) - model_kwargs['device_map'] = device_map - - if load_in_8bit or not load_half: - model = model_loader.from_pretrained( - base_model, - **model_kwargs, - ) - else: - model = model_loader.from_pretrained( - base_model, - **model_kwargs, - ).half() - return model - - -def get_model( - load_8bit: bool = False, - load_half: bool = True, - infer_devices: bool = True, - base_model: str = '', - tokenizer_base_model: str = '', - lora_weights: str = "", - gpu_id: int = 0, - - llama_type: bool = None, - reward_type: bool = None, - local_files_only: bool = False, - resume_download: bool = True, - use_auth_token: Union[str, bool] = False, - compile: bool = True, - **kwargs, -): - """ - - :param load_8bit: load model in 8-bit, not supported by all models - :param load_half: load model in 16-bit - :param infer_devices: Use torch infer of optimal placement of layers on devices (for non-lora case) - For non-LORA case, False will spread shards across multiple GPUs, but this can lead to cuda:x cuda:y mismatches - So it is not the default - :param base_model: name/path of base model - :param tokenizer_base_model: name/path of tokenizer - :param lora_weights: name/path - :param gpu_id: which GPU (0..n_gpus-1) or allow all GPUs if relevant (-1) - :param llama_type: whether LLaMa type model - :param reward_type: reward type model for sequence classification - :param local_files_only: use local files instead of from HF - :param resume_download: resume downloads from HF - :param use_auth_token: assumes user did on CLI `huggingface-cli login` to access private repo - :parm compile: whether to compile torch model - :param kwargs: - :return: - """ - print("Get %s model" % base_model, flush=True) - if lora_weights is not None and lora_weights.strip(): - print("Get %s lora weights" % lora_weights, flush=True) - device = get_device() - - if 'gpt2' in base_model.lower(): - # RuntimeError: where expected condition to be a boolean tensor, but got a tensor with dtype Half - load_8bit = False - - assert base_model.strip(), ( - "Please choose a base model with --base_model (CLI) or in Models Tab (gradio)" - ) - llama_type = llama_type or "llama" in base_model - model_loader, tokenizer_loader = get_loaders(llama_type=llama_type, model_name=base_model, reward_type=reward_type) - if not tokenizer_base_model: - tokenizer_base_model = base_model - - if tokenizer_loader is not None and not isinstance(tokenizer_loader, str): - tokenizer = tokenizer_loader.from_pretrained(tokenizer_base_model, - local_files_only=local_files_only, - resume_download=resume_download, - use_auth_token=use_auth_token, - ) - else: - tokenizer = tokenizer_loader - - if isinstance(tokenizer, str): - # already a pipeline, tokenizer_loader is string for task - model = model_loader(tokenizer, - model=base_model, - device=0 if device == "cuda" else -1, - torch_dtype=torch.float16) - else: - assert device == "cuda", "Unsupported device %s" % device - model_kwargs = dict(local_files_only=local_files_only, - torch_dtype=torch.float16, - resume_download=resume_download, - use_auth_token=use_auth_token) - if 'mbart-' not in base_model.lower(): - model_kwargs.update(dict(load_in_8bit=load_8bit, - device_map={"": 0} if load_8bit else "auto", - )) - if 'OpenAssistant/reward-model'.lower() in base_model.lower(): - # could put on other GPUs - model_kwargs['device_map'] = {"": 0} - model_kwargs.pop('torch_dtype', None) - - if not lora_weights: - with torch.device("cuda"): - if infer_devices: - model = get_non_lora_model(base_model, model_loader, load_half, model_kwargs, reward_type, - gpu_id=gpu_id, use_auth_token=use_auth_token) - else: - if load_half and not load_8bit: - model = model_loader.from_pretrained( - base_model, - **model_kwargs).half() - else: - model = model_loader.from_pretrained( - base_model, - **model_kwargs) - elif load_8bit: - model = model_loader.from_pretrained( - base_model, - **model_kwargs - ) - model = PeftModel.from_pretrained( - model, - lora_weights, - torch_dtype=torch.float16, - local_files_only=local_files_only, - resume_download=resume_download, - use_auth_token=use_auth_token, - device_map={"": 0}, # seems to be required - ) - else: - with torch.device("cuda"): - model = model_loader.from_pretrained( - base_model, - **model_kwargs - ) - model = PeftModel.from_pretrained( - model, - lora_weights, - torch_dtype=torch.float16, - local_files_only=local_files_only, - resume_download=resume_download, - use_auth_token=use_auth_token, - device_map="auto", - ) - if load_half: - model.half() - - # unwind broken decapoda-research config - if llama_type: - model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk - model.config.bos_token_id = 1 - model.config.eos_token_id = 2 - if 'gpt2' in base_model.lower(): - # add special tokens that otherwise all share the same id - tokenizer.add_special_tokens({'bos_token': '', - 'eos_token': '', - 'pad_token': ''}) - - if not isinstance(tokenizer, str): - model.eval() - if torch.__version__ >= "2" and sys.platform != "win32" and compile: - model = torch.compile(model) - - return model, tokenizer, device - - -def get_score_model(**kwargs): - # score model - if kwargs.get('score_model') is not None and kwargs.get('score_model').strip(): - score_all_kwargs = kwargs.copy() - score_all_kwargs['load_8bit'] = False - score_all_kwargs['load_half'] = False - score_all_kwargs['base_model'] = kwargs.get('score_model').strip() - score_all_kwargs['tokenizer_base_model'] = '' - score_all_kwargs['lora_weights'] = '' - score_all_kwargs['llama_type'] = False - score_all_kwargs['compile'] = False - smodel, stokenizer, sdevice = get_model(**score_all_kwargs) - else: - smodel, stokenizer, sdevice = None, None, None - return smodel, stokenizer, sdevice - - -def go_gradio(**kwargs): - # get default model - allow_api = kwargs['allow_api'] - all_kwargs = kwargs.copy() - all_kwargs.update(locals()) - if kwargs.get('base_model') and not kwargs['login_mode_if_model0']: - model0, tokenizer0, device = get_model(**all_kwargs) - else: - # if empty model, then don't load anything, just get gradio up - model0, tokenizer0, device = None, None, None - model_state0 = [model0, tokenizer0, device, kwargs['base_model']] - - # get score model - smodel, stokenizer, sdevice = get_score_model(**all_kwargs) - - if 'mbart-' in kwargs['model_lower']: - instruction_label_nochat = "Text to translate" - else: - instruction_label_nochat = "Instruction" - instruction_label = "You (Shift-Enter or push Submit to send message)" - - title = 'h2oGPT' - if kwargs['verbose']: - description = f"""Model {kwargs['base_model']} Instruct dataset. - For more information, visit [the project's website](https://github.com/h2oai/h2ogpt). - Command: {str(' '.join(sys.argv))} - Hash: {get_githash()} - """ - else: - description = "For more information, visit [the project's website](https://github.com/h2oai/h2ogpt).
" - if is_public: - description += "If this host is busy, try [gpt.h2o.ai 20B](https://gpt.h2o.ai) and [HF Spaces1 12B](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot) and [HF Spaces2 12B](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot2)
" - description += """

DISCLAIMERS:

  • The model was trained on The Pile and other data, which may contain objectionable content. Use at own risk.
  • """ - if kwargs['load_8bit']: - description += """
  • Model is loaded in 8-bit and has other restrictions on this host. UX can be worse than non-hosted version.
  • """ - description += """
  • Conversations may be used to improve h2oGPT. Do not share sensitive information.
  • """ - description += """
  • By using h2oGPT, you accept our [Terms of Service](https://github.com/h2oai/h2ogpt/blob/main/tos.md).

""" - - if kwargs['verbose']: - task_info_md = f""" - ### Task: {kwargs['task_info']}""" - else: - task_info_md = '' - - css_code = """footer {visibility: hidden;} -body{background:linear-gradient(#f5f5f5,#e5e5e5);} -body.dark{background:linear-gradient(#0d0d0d,#333333);}""" - - from gradio.themes.utils import Color, colors, fonts, sizes - if kwargs['h2ocolors']: - h2o_yellow = Color( - name="yellow", - c50="#fffef2", - c100="#fff9e6", - c200="#ffecb3", - c300="#ffe28c", - c400="#ffd659", - c500="#fec925", - c600="#e6ac00", - c700="#bf8f00", - c800="#a67c00", - c900="#664d00", - c950="#403000", - ) - h2o_gray = Color( - name="gray", - c50="#f2f2f2", - c100="#e5e5e5", - c200="#cccccc", - c300="#b2b2b2", - c400="#999999", - c500="#7f7f7f", - c600="#666666", - c700="#4c4c4c", - c800="#333333", - c900="#191919", - c950="#0d0d0d", - ) - colors_dict = dict(primary_hue=h2o_yellow, - secondary_hue=h2o_yellow, - neutral_hue=h2o_gray, - spacing_size=sizes.spacing_md, - radius_size=sizes.radius_md, - text_size=sizes.text_md, - ) - else: - colors_dict = dict(primary_hue=colors.indigo, - secondary_hue=colors.indigo, - neutral_hue=colors.gray, - spacing_size=sizes.spacing_md, - radius_size=sizes.radius_md, - text_size=sizes.text_md, - ) - - import gradio as gr - - if kwargs['gradio_avoid_processing_markdown']: - from gradio_client import utils as client_utils - from gradio.components import Chatbot - - # gradio has issue with taking too long to process input/output for markdown etc. - # Avoid for now, allow raw html to render, good enough for chatbot. - def _postprocess_chat_messages(self, chat_message: str): - if chat_message is None: - return None - elif isinstance(chat_message, (tuple, list)): - filepath = chat_message[0] - mime_type = client_utils.get_mimetype(filepath) - filepath = self.make_temp_copy_if_needed(filepath) - return { - "name": filepath, - "mime_type": mime_type, - "alt_text": chat_message[1] if len(chat_message) > 1 else None, - "data": None, # These last two fields are filled in by the frontend - "is_file": True, - } - elif isinstance(chat_message, str): - return chat_message - else: - raise ValueError(f"Invalid message for Chatbot component: {chat_message}") - - Chatbot._postprocess_chat_messages = _postprocess_chat_messages - - dark_js = """() => { - if (document.querySelectorAll('.dark').length) { - document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark')); - } else { - document.querySelector('body').classList.add('dark'); - } - }""" - - demo = gr.Blocks(theme=gr.themes.Soft(**colors_dict), css=css_code, title="h2oGPT", analytics_enabled=False) - callback = gr.CSVLogger() - # css_code = 'body{background-image:url("https://h2o.ai/content/experience-fragments/h2o/us/en/site/header/master/_jcr_content/root/container/header_copy/logo.coreimg.svg/1678976605175/h2o-logo.svg");}' - # demo = gr.Blocks(theme='gstaff/xkcd', css=css_code) - - model_options = flatten_list(list(prompt_type_to_model_name.values())) + kwargs['extra_model_options'] - if kwargs['base_model'].strip() not in model_options: - lora_options = [kwargs['base_model'].strip()] + model_options - lora_options = kwargs['extra_lora_options'] - if kwargs['lora_weights'].strip() not in lora_options: - lora_options = [kwargs['lora_weights'].strip()] + lora_options - # always add in no lora case - # add fake space so doesn't go away in gradio dropdown - no_lora_str = no_model_str = '[None/Remove]' - lora_options = [no_lora_str] + kwargs['extra_lora_options'] # FIXME: why double? - # always add in no model case so can free memory - # add fake space so doesn't go away in gradio dropdown - model_options = [no_model_str] + model_options - - # transcribe, will be detranscribed before use by evaluate() - if not kwargs['lora_weights'].strip(): - kwargs['lora_weights'] = no_lora_str - - if not kwargs['base_model'].strip(): - kwargs['base_model'] = no_model_str - - # transcribe for gradio - kwargs['gpu_id'] = str(kwargs['gpu_id']) - - no_model_msg = 'h2oGPT [ !!! Please Load Model in Models Tab !!! ]' - output_label0 = f'h2oGPT [Model: {kwargs.get("base_model")}]' if kwargs.get( - 'base_model') else no_model_msg - output_label0_model2 = no_model_msg - - with demo: - # avoid actual model/tokenizer here or anything that would be bad to deepcopy - # https://github.com/gradio-app/gradio/issues/3558 - model_state = gr.State(['model', 'tokenizer', device, kwargs['base_model']]) - model_state2 = gr.State([None, None, None, None]) - model_options_state = gr.State([model_options]) - lora_options_state = gr.State([lora_options]) - gr.Markdown( - f""" -

{title}

- - {description} - {task_info_md} - """) - if is_hf: - gr.HTML( - '''
Duplicate SpaceDuplicate this Space to skip the queue and run in a private space
''') - - # go button visible if - base_wanted = kwargs['base_model'] != no_model_str and kwargs['login_mode_if_model0'] - go_btn = gr.Button(value="ENTER", visible=base_wanted, variant="primary") - normal_block = gr.Row(visible=not base_wanted) - with normal_block: - with gr.Tabs(): - with gr.Row(): - col_nochat = gr.Column(visible=not kwargs['chat']) - with col_nochat: # FIXME: for model comparison, and check rest - text_output_nochat = gr.Textbox(lines=5, label=output_label0) - instruction_nochat = gr.Textbox( - lines=4, label=instruction_label_nochat, - placeholder=kwargs['placeholder_instruction'], - ) - iinput_nochat = gr.Textbox(lines=4, label="Input context for Instruction", - placeholder=kwargs['placeholder_input']) - submit_nochat = gr.Button("Submit") - flag_btn_nochat = gr.Button("Flag") - if not kwargs['auto_score']: - with gr.Column(visible=kwargs['score_model']): - score_btn_nochat = gr.Button("Score last prompt & response") - score_text_nochat = gr.Textbox("Response Score: NA", show_label=False) - else: - with gr.Column(visible=kwargs['score_model']): - score_text_nochat = gr.Textbox("Response Score: NA", show_label=False) - col_chat = gr.Column(visible=kwargs['chat']) - with col_chat: - with gr.Row(): - text_output = gr.Chatbot(label=output_label0).style(height=kwargs['height'] or 400) - text_output2 = gr.Chatbot(label=output_label0_model2, visible=False).style( - height=kwargs['height'] or 400) - with gr.Row(): - with gr.Column(scale=50): - instruction = gr.Textbox( - lines=4, label=instruction_label, - placeholder=kwargs['placeholder_instruction'], - ) - with gr.Row(): - submit = gr.Button(value='Submit').style(full_width=False, size='sm') - stop_btn = gr.Button(value="Stop").style(full_width=False, size='sm') - with gr.Row(): - clear = gr.Button("New Conversation") - flag_btn = gr.Button("Flag") - if not kwargs['auto_score']: # FIXME: For checkbox model2 - with gr.Column(visible=kwargs['score_model']): - with gr.Row(): - score_btn = gr.Button("Score last prompt & response").style( - full_width=False, size='sm') - score_text = gr.Textbox("Response Score: NA", show_label=False) - score_res2 = gr.Row(visible=False) - with score_res2: - score_btn2 = gr.Button("Score last prompt & response 2").style( - full_width=False, size='sm') - score_text2 = gr.Textbox("Response Score2: NA", show_label=False) - else: - with gr.Column(visible=kwargs['score_model']): - score_text = gr.Textbox("Response Score: NA", show_label=False) - score_text2 = gr.Textbox("Response Score2: NA", show_label=False, visible=False) - retry = gr.Button("Regenerate") - undo = gr.Button("Undo") - with gr.TabItem("Input/Output"): - with gr.Row(): - if 'mbart-' in kwargs['model_lower']: - src_lang = gr.Dropdown(list(languages_covered().keys()), - value=kwargs['src_lang'], - label="Input Language") - tgt_lang = gr.Dropdown(list(languages_covered().keys()), - value=kwargs['tgt_lang'], - label="Output Language") - with gr.TabItem("Expert"): - with gr.Row(): - with gr.Column(): - stream_output = gr.components.Checkbox(label="Stream output", - value=kwargs['stream_output']) - prompt_type = gr.Dropdown(prompt_types_strings, - value=kwargs['prompt_type'], label="Prompt Type", - visible=not is_public) - prompt_type2 = gr.Dropdown(prompt_types_strings, - value=kwargs['prompt_type'], label="Prompt Type Model 2", - visible=not is_public and False) - do_sample = gr.Checkbox(label="Sample", info="Enable sampler, required for use of temperature, top_p, top_k", - value=kwargs['do_sample']) - temperature = gr.Slider(minimum=0.01, maximum=3, - value=kwargs['temperature'], - label="Temperature", - info="Lower is deterministic (but may lead to repeats), Higher more creative (but may lead to hallucinations)") - top_p = gr.Slider(minimum=0, maximum=1, - value=kwargs['top_p'], label="Top p", - info="Cumulative probability of tokens to sample from") - top_k = gr.Slider( - minimum=0, maximum=100, step=1, - value=kwargs['top_k'], label="Top k", - info='Num. tokens to sample from' - ) - max_beams = 8 if not is_low_mem else 2 - num_beams = gr.Slider(minimum=1, maximum=max_beams, step=1, - value=min(max_beams, kwargs['num_beams']), label="Beams", - info="Number of searches for optimal overall probability. " - "Uses more GPU memory/compute") - max_max_new_tokens = 2048 if not is_low_mem else kwargs['max_new_tokens'] - max_new_tokens = gr.Slider( - minimum=1, maximum=max_max_new_tokens, step=1, - value=min(max_max_new_tokens, kwargs['max_new_tokens']), label="Max output length", - ) - min_new_tokens = gr.Slider( - minimum=0, maximum=max_max_new_tokens, step=1, - value=min(max_max_new_tokens, kwargs['min_new_tokens']), label="Min output length", - ) - early_stopping = gr.Checkbox(label="EarlyStopping", info="Stop early in beam search", - value=kwargs['early_stopping']) - max_max_time = 60 * 5 if not is_low_mem else 60 - max_time = gr.Slider(minimum=0, maximum=max_max_time, step=1, - value=min(max_max_time, kwargs['max_time']), label="Max. time", - info="Max. time to search optimal output.") - repetition_penalty = gr.Slider(minimum=0.01, maximum=3.0, - value=kwargs['repetition_penalty'], - label="Repetition Penalty") - num_return_sequences = gr.Slider(minimum=1, maximum=10, step=1, - value=kwargs['num_return_sequences'], - label="Number Returns", info="Must be <= num_beams", - visible=not is_public) - iinput = gr.Textbox(lines=4, label="Input", - placeholder=kwargs['placeholder_input'], - visible=not is_public) - context = gr.Textbox(lines=3, label="System Pre-Context", - info="Directly pre-appended without prompt processing", - visible=not is_public and not kwargs['chat']) - chat = gr.components.Checkbox(label="Chat mode", value=kwargs['chat'], - visible=not is_public) - - with gr.TabItem("Models"): - load_msg = "Load-Unload Model/LORA" if not is_public \ - else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO" - load_msg2 = "Load-Unload Model/LORA 2" if not is_public \ - else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO 2" - compare_checkbox = gr.components.Checkbox(label="Compare Mode", - value=False, visible=not is_public) - with gr.Row(): - n_gpus = torch.cuda.device_count() - n_gpus_list = [str(x) for x in list(range(-1, n_gpus))] - with gr.Column(): - with gr.Row(): - with gr.Column(scale=50): - model_choice = gr.Dropdown(model_options_state.value[0], label="Choose Model", - value=kwargs['base_model']) - lora_choice = gr.Dropdown(lora_options_state.value[0], label="Choose LORA", - value=kwargs['lora_weights'], visible=kwargs['show_lora']) - with gr.Column(scale=1): - load_model_button = gr.Button(load_msg) - model_load8bit_checkbox = gr.components.Checkbox( - label="Load 8-bit [Not all models support]", - value=kwargs['load_8bit']) - model_infer_devices_checkbox = gr.components.Checkbox( - label="Infer Devices [If GPU ID=-1 or not Checked, then will spread model over GPUs]", - value=kwargs['infer_devices']) - model_gpu = gr.Dropdown(n_gpus_list, label="GPU ID [-1 = all GPUs]", - value=kwargs['gpu_id']) - model_used = gr.Textbox(label="Current Model", value=kwargs['base_model']) - lora_used = gr.Textbox(label="Current LORA", value=kwargs['lora_weights'], - visible=kwargs['show_lora']) - with gr.Row(): - with gr.Column(scale=50): - new_model = gr.Textbox(label="New Model HF name/path") - new_lora = gr.Textbox(label="New LORA HF name/path", visible=kwargs['show_lora']) - with gr.Column(scale=1): - add_model_button = gr.Button("Add new model name") - add_lora_button = gr.Button("Add new LORA name", visible=kwargs['show_lora']) - col_model2 = gr.Column(visible=False) - with col_model2: - with gr.Row(): - with gr.Column(scale=50): - model_choice2 = gr.Dropdown(model_options_state.value[0], label="Choose Model 2", - value=no_model_str) - lora_choice2 = gr.Dropdown(lora_options_state.value[0], label="Choose LORA 2", - value=no_lora_str, - visible=kwargs['show_lora']) - with gr.Column(scale=1): - load_model_button2 = gr.Button(load_msg2) - model_load8bit_checkbox2 = gr.components.Checkbox( - label="Load 8-bit 2 [Not all models support]", - value=kwargs['load_8bit']) - model_infer_devices_checkbox2 = gr.components.Checkbox( - label="Infer Devices 2 [If GPU ID=-1 or not Checked, then will spread model over GPUs]", - value=kwargs[ - 'infer_devices']) - model_gpu2 = gr.Dropdown(n_gpus_list, label="GPU ID [-1 = all GPUs]", - value=kwargs['gpu_id']) - # no model/lora loaded ever in model2 by default - model_used2 = gr.Textbox(label="Current Model 2", value=no_model_str) - lora_used2 = gr.Textbox(label="Current LORA 2", value=no_lora_str, - visible=kwargs['show_lora']) - with gr.TabItem("System"): - admin_row = gr.Row() - with admin_row: - admin_pass_textbox = gr.Textbox(label="Admin Password", type='password', visible=is_public) - admin_btn = gr.Button(value="Admin Access", visible=is_public) - system_row = gr.Row(visible=not is_public) - with system_row: - with gr.Column(): - with gr.Row(): - system_btn = gr.Button(value='Get System Info') - system_text = gr.Textbox(label='System Info') - - with gr.Row(): - zip_btn = gr.Button("Zip") - zip_text = gr.Textbox(label="Zip file name") - file_output = gr.File() - with gr.Row(): - s3up_btn = gr.Button("S3UP") - s3up_text = gr.Textbox(label='S3UP result') - - # Get flagged data - zip_data1 = functools.partial(zip_data, root_dirs=['flagged_data_points', kwargs['save_dir']]) - zip_btn.click(zip_data1, inputs=None, outputs=[file_output, zip_text]) - s3up_btn.click(s3up, inputs=zip_text, outputs=s3up_text) - - def check_admin_pass(x): - return gr.update(visible=x == admin_pass) - - def close_admin(x): - return gr.update(visible=not (x == admin_pass)) - - admin_btn.click(check_admin_pass, inputs=admin_pass_textbox, outputs=system_row) \ - .then(close_admin, inputs=admin_pass_textbox, outputs=admin_row) - - # Get inputs to evaluate() - inputs_list = get_inputs_list(locals(), kwargs['model_lower']) - from functools import partial - all_kwargs = kwargs.copy() - all_kwargs.update(locals()) - kwargs_evaluate = {k: v for k, v in all_kwargs.items() if k in inputs_kwargs_list} - fun = partial(evaluate, - **kwargs_evaluate) - fun2 = partial(evaluate, - **kwargs_evaluate) - - dark_mode_btn = gr.Button("Dark Mode", variant="primary").style( - size="sm", - ) - dark_mode_btn.click( - None, - None, - None, - _js=dark_js, - api_name="dark" if allow_api else None, - ) - - # Control chat and non-chat blocks, which can be independently used by chat checkbox swap - def col_nochat_fun(x): - return gr.Column.update(visible=not x) - - def col_chat_fun(x): - return gr.Column.update(visible=x) - - def context_fun(x): - return gr.Textbox.update(visible=not x) - - chat.select(col_nochat_fun, chat, col_nochat, api_name="chat_checkbox" if allow_api else None) \ - .then(col_chat_fun, chat, col_chat) \ - .then(context_fun, chat, context) - - # examples after submit or any other buttons for chat or no chat - if kwargs['examples'] is not None and kwargs['show_examples']: - gr.Examples(examples=kwargs['examples'], inputs=inputs_list) - - # Score - def score_last_response(*args, nochat=False, model2=False): - """ Similar to user() """ - args_list = list(args) - - max_length_tokenize = 512 if is_low_mem else 2048 - cutoff_len = max_length_tokenize * 4 # restrict deberta related to max for LLM - - if not nochat: - history = args_list[-1] - if history is None: - if not model2: - # maybe only doing first model, no need to complain - print("Bad history in scoring last response, fix for now", flush=True) - history = [] - if smodel is not None and \ - stokenizer is not None and \ - sdevice is not None and \ - history is not None and len(history) > 0 and \ - history[-1] is not None and \ - len(history[-1]) >= 2: - os.environ['TOKENIZERS_PARALLELISM'] = 'false' - - question = history[-1][0] - - answer = history[-1][1] - else: - return 'Response Score: NA' - else: - answer = args_list[-1] - instruction_nochat_arg_id = eval_func_param_names.index('instruction_nochat') - question = args_list[instruction_nochat_arg_id] - - if question is None: - return 'Response Score: Bad Question' - if answer is None: - return 'Response Score: Bad Answer' - - question = question[-cutoff_len:] - answer = answer[-cutoff_len:] - - inputs = stokenizer(question, answer, - return_tensors="pt", - truncation=True, - max_length=max_length_tokenize).to(smodel.device) - try: - score = torch.sigmoid(smodel(**inputs).logits[0]).cpu().detach().numpy()[0] - except torch.cuda.OutOfMemoryError as e: - print("GPU OOM: question: %s answer: %s exception: %s" % (question, answer, str(e)), flush=True) - del inputs - traceback.print_exc() - clear_torch_cache() - return 'Response Score: GPU OOM' - except (Exception, RuntimeError) as e: - if 'Expected all tensors to be on the same device' in str(e) or \ - 'expected scalar type Half but found Float' in str(e) or \ - 'probability tensor contains either' in str(e) or \ - 'cublasLt ran into an error!' in str(e): - print("GPU Error: question: %s answer: %s exception: %s" % (question, answer, str(e)), - flush=True) - traceback.print_exc() - clear_torch_cache() - return 'Response Score: GPU Error' - else: - raise - os.environ['TOKENIZERS_PARALLELISM'] = 'true' - return 'Response Score: {:.1%}'.format(score) - - def noop_score_last_response(*args, **kwargs): - return "Response Score: Disabled" - if kwargs['score_model']: - score_fun = score_last_response - else: - score_fun = noop_score_last_response - - score_args = dict(fn=score_fun, - inputs=inputs_list + [text_output], - outputs=[score_text], - ) - score_args2 = dict(fn=partial(score_fun, model2=True), - inputs=inputs_list + [text_output2], - outputs=[score_text2], - ) - - score_args_nochat = dict(fn=partial(score_fun, nochat=True), - inputs=inputs_list + [text_output_nochat], - outputs=[score_text_nochat], - ) - if not kwargs['auto_score']: - score_event = score_btn.click(**score_args, queue=stream_output, api_name='score' if allow_api else None) \ - .then(**score_args2, queue=stream_output, api_name='score2' if allow_api else None) - score_event_nochat = score_btn_nochat.click(**score_args_nochat, queue=stream_output, - api_name='score_nochat' if allow_api else None) - - def user(*args, undo=False, sanitize_user_prompt=True, model2=False): - """ - User that fills history for bot - :param args: - :param undo: - :param sanitize_user_prompt: - :param model2: - :return: - """ - args_list = list(args) - user_message = args_list[0] - input1 = args_list[1] - context1 = args_list[2] - if input1 and not user_message.endswith(':'): - user_message1 = user_message + ":" + input1 - elif input1: - user_message1 = user_message + input1 - else: - user_message1 = user_message - if sanitize_user_prompt: - from better_profanity import profanity - user_message1 = profanity.censor(user_message1) - - history = args_list[-1] - if undo and history: - history.pop() - args_list = args_list[:-1] # FYI, even if unused currently - if history is None: - if not model2: - # no need to complain so often unless model1 - print("Bad history, fix for now", flush=True) - history = [] - # ensure elements not mixed across models as output, - # even if input is currently same source - history = history.copy() - if undo: - return history - else: - # FIXME: compare, same history for now - return history + [[user_message1, None]] - - def bot(*args, retry=False): - """ - bot that consumes history for user input - instruction (from input_list) itself is not consumed by bot - :param args: - :param retry: - :return: - """ - args_list = list(args).copy() - history = args_list[-1] # model_state is -2 - if retry and history: - history.pop() - if not history: - print("No history", flush=True) - return - # ensure output will be unique to models - history = history.copy() - instruction1 = history[-1][0] - context1 = '' - if kwargs['chat_history'] > 0: - prompt_type_arg_id = eval_func_param_names.index('prompt_type') - prompt_type1 = args_list[prompt_type_arg_id] - chat_arg_id = eval_func_param_names.index('chat') - chat1 = args_list[chat_arg_id] - context1 = '' - for histi in range(len(history) - 1): - data_point = dict(instruction=history[histi][0], input='', output=history[histi][1]) - context1 += generate_prompt(data_point, prompt_type1, chat1, reduced=True)[0].replace( - '
', '\n') - if not context1.endswith('\n'): - context1 += '\n' - if context1 and not context1.endswith('\n'): - context1 += '\n' # ensure if terminates abruptly, then human continues on next line - args_list[0] = instruction1 # override original instruction with history from user - # only include desired chat history - args_list[2] = context1[-kwargs['chat_history']:] - model_state1 = args_list[-2] - if model_state1[0] is None or model_state1[0] == no_model_str: - return - args_list = args_list[:-2] - fun1 = partial(evaluate, - model_state1, - **kwargs_evaluate) - try: - for output in fun1(*tuple(args_list)): - bot_message = output - history[-1][1] = bot_message - yield history - except StopIteration: - yield history - except RuntimeError as e: - if "generator raised StopIteration" in str(e): - # assume last entry was bad, undo - history.pop() - yield history - raise - except Exception as e: - # put error into user input - history[-1][0] = "Exception: %s" % str(e) - yield history - raise - return - - # NORMAL MODEL - user_args = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt']), - inputs=inputs_list + [text_output], - outputs=text_output, - ) - bot_args = dict(fn=bot, - inputs=inputs_list + [model_state] + [text_output], - outputs=text_output, - ) - retry_bot_args = dict(fn=functools.partial(bot, retry=True), - inputs=inputs_list + [model_state] + [text_output], - outputs=text_output, - ) - undo_user_args = dict(fn=functools.partial(user, undo=True), - inputs=inputs_list + [text_output], - outputs=text_output, - ) - - # MODEL2 - user_args2 = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt'], model2=True), - inputs=inputs_list + [text_output2], - outputs=text_output2, - ) - bot_args2 = dict(fn=bot, - inputs=inputs_list + [model_state2] + [text_output2], - outputs=text_output2, - ) - retry_bot_args2 = dict(fn=functools.partial(bot, retry=True), - inputs=inputs_list + [model_state2] + [text_output2], - outputs=text_output2, - ) - undo_user_args2 = dict(fn=functools.partial(user, undo=True), - inputs=inputs_list + [text_output2], - outputs=text_output2, - ) - - def clear_instruct(): - return gr.Textbox.update(value='') - - if kwargs['auto_score']: - # in case 2nd model, consume instruction first, so can clear quickly - # bot doesn't consume instruction itself, just history from user, so why works - submit_event = instruction.submit(**user_args, queue=stream_output, api_name='instruction' if allow_api else None) \ - .then(**user_args2, queue=stream_output, api_name='instruction2' if allow_api else None) \ - .then(clear_instruct, None, instruction) \ - .then(**bot_args, api_name='instruction_bot' if allow_api else None) \ - .then(**score_args, api_name='instruction_bot_score' if allow_api else None) \ - .then(**bot_args2, api_name='instruction_bot2' if allow_api else None) \ - .then(**score_args2, api_name='instruction_bot_score2' if allow_api else None) \ - .then(clear_torch_cache) - submit_event2 = submit.click(**user_args, queue=stream_output, api_name='submit' if allow_api else None) \ - .then(**user_args2, queue=stream_output, api_name='submit2' if allow_api else None) \ - .then(**bot_args, api_name='submit_bot' if allow_api else None) \ - .then(clear_instruct, None, instruction) \ - .then(**score_args, api_name='submit_bot_score' if allow_api else None) \ - .then(**bot_args2, api_name='submit_bot2' if allow_api else None) \ - .then(**score_args2, api_name='submit_bot_score2' if allow_api else None) \ - .then(clear_torch_cache) - submit_event3 = retry.click(**user_args, queue=stream_output, api_name='retry' if allow_api else None) \ - .then(**user_args2, queue=stream_output, api_name='retry2' if allow_api else None) \ - .then(clear_instruct, None, instruction) \ - .then(**retry_bot_args, api_name='retry_bot' if allow_api else None) \ - .then(**score_args, api_name='retry_bot_score' if allow_api else None) \ - .then(**retry_bot_args2, api_name='retry_bot2' if allow_api else None) \ - .then(**score_args2, api_name='retry_bot_score2' if allow_api else None) \ - .then(clear_torch_cache) - submit_event4 = undo.click(**undo_user_args, queue=stream_output, api_name='undo' if allow_api else None) \ - .then(**score_args, api_name='undo_score' if allow_api else None) \ - .then(**undo_user_args2, queue=stream_output, api_name='undo2' if allow_api else None) \ - .then(**score_args2, api_name='undo_score2' if allow_api else None) \ - .then(clear_instruct, None, instruction) - else: - submit_event = instruction.submit(**user_args, queue=stream_output, api_name='instruction' if allow_api else None) \ - .then(**user_args2, queue=stream_output, api_name='instruction2' if allow_api else None) \ - .then(clear_instruct, None, instruction) \ - .then(**bot_args, api_name='instruction_bot' if allow_api else None) \ - .then(**bot_args2, api_name='instruction_bot2' if allow_api else None) \ - .then(clear_torch_cache) - submit_event2 = submit.click(**user_args, queue=stream_output, api_name='submit' if allow_api else None) \ - .then(**user_args2, queue=stream_output, api_name='submit2' if allow_api else None) \ - .then(clear_instruct, None, instruction) \ - .then(**bot_args, api_name='submit_bot' if allow_api else None) \ - .then(**bot_args2, api_name='submit_bot2' if allow_api else None) \ - .then(clear_torch_cache) - submit_event3 = retry.click(**user_args, queue=stream_output, api_name='retry' if allow_api else None) \ - .then(**user_args2, queue=stream_output, api_name='retry2' if allow_api else None) \ - .then(clear_instruct, None, instruction) \ - .then(**retry_bot_args, api_name='retry_bot' if allow_api else None) \ - .then(**retry_bot_args2, api_name='retry_bot2' if allow_api else None) \ - .then(clear_torch_cache) - submit_event4 = undo.click(**undo_user_args, queue=stream_output, api_name='undo' if allow_api else None) \ - .then(**undo_user_args2, queue=stream_output, api_name='undo2' if allow_api else None) - - # does both models - clear.click(lambda: None, None, text_output, queue=False, api_name='clear' if allow_api else None) \ - .then(lambda: None, None, text_output2, queue=False, api_name='clear2' if allow_api else None) - # FIXME: compare - submit_event_nochat = submit_nochat.click(fun, inputs=[model_state] + inputs_list, - outputs=text_output_nochat, api_name='submit_nochat' if allow_api else None) \ - .then(**score_args_nochat, api_name='instruction_bot_score_nochat' if allow_api else None) \ - .then(clear_torch_cache) - - def load_model(model_name, lora_weights, model_state_old, prompt_type_old, load_8bit, infer_devices, gpu_id): - # ensure old model removed from GPU memory - if kwargs['debug']: - print("Pre-switch pre-del GPU memory: %s" % torch.cuda.memory_allocated(), flush=True) - - if isinstance(model_state_old[0], str) and model0 is not None: - # best can do, move model loaded at first to CPU - model0.cpu() - - if model_state_old[0] is not None and not isinstance(model_state_old[0], str): - try: - model_state_old[0].cpu() - except Exception as e: - # sometimes hit NotImplementedError: Cannot copy out of meta tensor; no data! - print("Unable to put model on CPU: %s" % str(e), flush=True) - del model_state_old[0] - model_state_old[0] = None - - if model_state_old[1] is not None and not isinstance(model_state_old[1], str): - del model_state_old[1] - model_state_old[1] = None - - clear_torch_cache() - if kwargs['debug']: - print("Pre-switch post-del GPU memory: %s" % torch.cuda.memory_allocated(), flush=True) - - if model_name is None or model_name == no_model_str: - # no-op if no model, just free memory - # no detranscribe needed for model, never go into evaluate - lora_weights = no_lora_str - return [None, None, None, model_name], model_name, lora_weights, prompt_type_old - - all_kwargs1 = all_kwargs.copy() - all_kwargs1['base_model'] = model_name.strip() - all_kwargs1['load_8bit'] = load_8bit - all_kwargs1['infer_devices'] = infer_devices - all_kwargs1['gpu_id'] = int(gpu_id) # detranscribe - model_lower = model_name.strip().lower() - if model_lower in inv_prompt_type_to_model_lower: - prompt_type1 = inv_prompt_type_to_model_lower[model_lower] - else: - prompt_type1 = prompt_type_old - - # detranscribe - if lora_weights == no_lora_str: - lora_weights = '' - - all_kwargs1['lora_weights'] = lora_weights.strip() - model1, tokenizer1, device1 = get_model(**all_kwargs1) - clear_torch_cache() - - if kwargs['debug']: - print("Post-switch GPU memory: %s" % torch.cuda.memory_allocated(), flush=True) - return [model1, tokenizer1, device1, model_name], model_name, lora_weights, prompt_type1 - - def dropdown_prompt_type_list(x): - return gr.Dropdown.update(value=x) - - def chatbot_list(x, model_used_in): - return gr.Textbox.update(label=f'h2oGPT [Model: {model_used_in}]') - - load_model_args = dict(fn=load_model, - inputs=[model_choice, lora_choice, model_state, prompt_type, - model_load8bit_checkbox, model_infer_devices_checkbox, model_gpu], - outputs=[model_state, model_used, lora_used, prompt_type]) - prompt_update_args = dict(fn=dropdown_prompt_type_list, inputs=prompt_type, outputs=prompt_type) - chatbot_update_args = dict(fn=chatbot_list, inputs=[text_output, model_used], outputs=text_output) - nochat_update_args = dict(fn=chatbot_list, inputs=[text_output, model_used], outputs=text_output_nochat) - if not is_public: - load_model_event = load_model_button.click(**load_model_args) \ - .then(**prompt_update_args) \ - .then(**chatbot_update_args) \ - .then(**nochat_update_args) \ - .then(clear_torch_cache) - - load_model_args2 = dict(fn=load_model, - inputs=[model_choice2, lora_choice2, model_state2, prompt_type2, - model_load8bit_checkbox2, model_infer_devices_checkbox2, model_gpu2], - outputs=[model_state2, model_used2, lora_used2, prompt_type2]) - prompt_update_args2 = dict(fn=dropdown_prompt_type_list, inputs=prompt_type2, outputs=prompt_type2) - chatbot_update_args2 = dict(fn=chatbot_list, inputs=[text_output2, model_used2], outputs=text_output2) - if not is_public: - load_model_event2 = load_model_button2.click(**load_model_args2) \ - .then(**prompt_update_args2) \ - .then(**chatbot_update_args2) \ - .then(clear_torch_cache) - - def dropdown_model_list(list0, x): - new_state = [list0[0] + [x]] - new_options = [*new_state[0]] - return gr.Dropdown.update(value=x, choices=new_options), \ - gr.Dropdown.update(value=x, choices=new_options), \ - '', new_state - - add_model_event = add_model_button.click(fn=dropdown_model_list, - inputs=[model_options_state, new_model], - outputs=[model_choice, model_choice2, new_model, model_options_state]) - - def dropdown_lora_list(list0, x, model_used1, lora_used1, model_used2, lora_used2): - new_state = [list0[0] + [x]] - new_options = [*new_state[0]] - # don't switch drop-down to added lora if already have model loaded - x1 = x if model_used1 == no_model_str else lora_used1 - x2 = x if model_used2 == no_model_str else lora_used2 - return gr.Dropdown.update(value=x1, choices=new_options), \ - gr.Dropdown.update(value=x2, choices=new_options), \ - '', new_state - - add_lora_event = add_lora_button.click(fn=dropdown_lora_list, - inputs=[lora_options_state, new_lora, model_used, lora_used, model_used2, lora_used2], - outputs=[lora_choice, lora_choice2, new_lora, lora_options_state]) - - go_btn.click(lambda: gr.update(visible=False), None, go_btn, api_name="go" if allow_api else None) \ - .then(lambda: gr.update(visible=True), None, normal_block) \ - .then(**load_model_args).then(**prompt_update_args) - - def compare_textbox_fun(x): - return gr.Textbox.update(visible=x) - - def compare_column_fun(x): - return gr.Column.update(visible=x) - - def compare_prompt_fun(x): - return gr.Dropdown.update(visible=x) - - compare_checkbox.select(compare_textbox_fun, compare_checkbox, text_output2, - api_name="compare_checkbox" if allow_api else None) \ - .then(compare_column_fun, compare_checkbox, col_model2) \ - .then(compare_prompt_fun, compare_checkbox, prompt_type2) \ - .then(compare_textbox_fun, compare_checkbox, score_text2) - # FIXME: add score_res2 in condition, but do better - - # callback for logging flagged input/output - callback.setup(inputs_list + [text_output], "flagged_data_points") - flag_btn.click(lambda *args: callback.flag(args), inputs_list + [text_output], None, preprocess=False, - api_name='flag' if allow_api else None) - flag_btn_nochat.click(lambda *args: callback.flag(args), inputs_list + [text_output], None, preprocess=False, - api_name='flag_nochat' if allow_api else None) - - def get_system_info(): - return gr.Textbox.update(value=system_info_print()) - - system_event = system_btn.click(get_system_info, outputs=system_text, api_name='system_info' if allow_api else None) - - # don't pass text_output, don't want to clear output, just stop it - # FIXME: have to click once to stop output and second time to stop GPUs going - stop_btn.click(lambda: None, None, None, - cancels=[submit_event_nochat, submit_event, submit_event2, submit_event3], - queue=False, api_name='stop' if allow_api else None).then(clear_torch_cache) - demo.load(None, None, None, _js=dark_js) - - demo.queue(concurrency_count=kwargs['concurrency_count'], api_open=kwargs['api_open']) - favicon_path = "h2o-logo.svg" - demo.launch(share=kwargs['share'], server_name="0.0.0.0", show_error=True, - favicon_path=favicon_path, prevent_thread_lock=True) # , enable_queue=True) - print("Started GUI", flush=True) - if kwargs['block_gradio_exit']: - demo.block_thread() - - -input_args_list = ['model_state'] -inputs_kwargs_list = ['debug', 'save_dir', 'hard_stop_list', 'sanitize_bot_response', 'model_state0'] - - -def get_inputs_list(inputs_dict, model_lower): - """ - map gradio objects in locals() to inputs for evaluate(). - :param inputs_dict: - :param model_lower: - :return: - """ - inputs_list_names = list(inspect.signature(evaluate).parameters) - inputs_list = [] - for k in inputs_list_names: - if k == 'kwargs': - continue - if k in input_args_list + inputs_kwargs_list: - # these are added via partial, not taken as input - continue - if 'mbart-' not in model_lower and k in ['src_lang', 'tgt_lang']: - continue - inputs_list.append(inputs_dict[k]) - return inputs_list - - -eval_func_param_names = ['instruction', - 'iinput', - 'context', - 'stream_output', - 'prompt_type', - 'temperature', - 'top_p', - 'top_k', - 'num_beams', - 'max_new_tokens', - 'min_new_tokens', - 'early_stopping', - 'max_time', - 'repetition_penalty', - 'num_return_sequences', - 'do_sample', - 'chat', - 'instruction_nochat', - 'iinput_nochat', - ] - - -def evaluate( - model_state, - # START NOTE: Examples must have same order of parameters - instruction, - iinput, - context, - stream_output, - prompt_type, - temperature, - top_p, - top_k, - num_beams, - max_new_tokens, - min_new_tokens, - early_stopping, - max_time, - repetition_penalty, - num_return_sequences, - do_sample, - chat, - instruction_nochat, - iinput_nochat, - # END NOTE: Examples must have same order of parameters - src_lang=None, - tgt_lang=None, - debug=False, - save_dir=None, - hard_stop_list=None, - sanitize_bot_response=True, - model_state0=None, - **kwargs, -): - if debug: - locals_dict = locals().copy() - locals_dict.pop('model_state', None) - locals_dict.pop('model_state0', None) - print(locals_dict) - - no_model_msg = "Please choose a base model with --base_model (CLI) or in Models Tab (gradio).\nThen start New Conversation" - - if model_state0 is None: - # e.g. for no gradio case, set dummy value, else should be set - model_state0 = [None, None, None, None] - - if model_state is not None and len(model_state) == 4 and not isinstance(model_state[0], str): - # try to free-up original model (i.e. list was passed as reference) - if model_state0 is not None and model_state0[0] is not None: - model_state0[0].cpu() - model_state0[0] = None - # try to free-up original tokenizer (i.e. list was passed as reference) - if model_state0 is not None and model_state0[1] is not None: - model_state0[1] = None - clear_torch_cache() - model, tokenizer, device, base_model = model_state - elif model_state0 is not None and len(model_state0) == 4 and model_state0[0] is not None: - assert isinstance(model_state[0], str) - model, tokenizer, device, base_model = model_state0 - else: - raise AssertionError(no_model_msg) - - if base_model is None: - raise AssertionError(no_model_msg) - - assert base_model.strip(), no_model_msg - assert model, "Model is missing" - assert tokenizer, "Tokenizer is missing" - - # choose chat or non-chat mode - if not chat: - instruction = instruction_nochat - iinput = iinput_nochat - - data_point = dict(context=context, instruction=instruction, input=iinput) - prompter = Prompter(prompt_type, debug=debug, chat=chat, stream_output=stream_output) - prompt = prompter.generate_prompt(data_point) - - if hard_stop_list is None: - # acts like undo on user entry and bot response - hard_stop_list = [] - - if isinstance(tokenizer, str): - # pipeline - if tokenizer == "summarization": - key = 'summary_text' - else: - raise RuntimeError("No such task type %s" % tokenizer) - # NOTE: uses max_length only - yield model(prompt, max_length=max_new_tokens)[0][key] - - if 'mbart-' in base_model.lower(): - assert src_lang is not None - tokenizer.src_lang = languages_covered()[src_lang] - - if chat: - # override, ignore user change - num_return_sequences = 1 - if prompt_type in ['human_bot', 'instruct_vicuna', 'instruct_with_end']: - if prompt_type == 'human_bot': - # encounters = [prompt.count(human) + 1, prompt.count(bot) + 1] - # stopping only starts once output is beyond prompt - # 1 human is enough to trigger, but need 2 bots, because very first view back will be bot we added - stop_words = [human, bot, '\n' + human, '\n' + bot] - encounters = [1, 2] - elif prompt_type == 'instruct_vicuna': - # even below is not enough, generic strings and many ways to encode - stop_words = [ - '### Human:', - """ -### Human:""", - """ -### Human: -""", - '### Assistant:', - """ -### Assistant:""", - """ -### Assistant: -""", - ] - encounters = [1, 2] - else: - # some instruct prompts have this as end, doesn't hurt to stop on it since not common otherwise - stop_words = ['### End'] - encounters = [1] - stop_words_ids = [ - tokenizer(stop_word, return_tensors='pt')['input_ids'].squeeze() for stop_word in stop_words] - # handle single token case - stop_words_ids = [x if len(x.shape) > 0 else torch.tensor([x]) for x in stop_words_ids] - stop_words_ids = [x for x in stop_words_ids if x.shape[0] > 0] - # avoid padding in front of tokens - if tokenizer.pad_token: - stop_words_ids = [x[1:] if x[0] == tokenizer.pad_token_id and len(x) > 1 else x for x in stop_words_ids] - # handle fake \n added - stop_words_ids = [x[1:] if y[0] == '\n' else x for x, y in zip(stop_words_ids, stop_words)] - # build stopper - stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids, encounters=encounters)]) - else: - stopping_criteria = StoppingCriteriaList() - - # help to avoid errors like: - # RuntimeError: The size of tensor a (2048) must match the size of tensor b (2049) at non-singleton dimension 3 - # RuntimeError: expected scalar type Half but found Float - # with - 256 - max_length_tokenize = 768 - 256 if is_low_mem else 2048 - 256 - cutoff_len = max_length_tokenize * 4 # if reaches limit, then can't generate new tokens - output_smallest = 30 * 4 - prompt = prompt[-cutoff_len - output_smallest:] - inputs = tokenizer(prompt, - return_tensors="pt", - truncation=True, - max_length=max_length_tokenize) - if debug and len(inputs["input_ids"]) > 0: - print('input_ids length', len(inputs["input_ids"][0]), flush=True) - input_ids = inputs["input_ids"].to(device) - generation_config = GenerationConfig( - temperature=float(temperature), - top_p=float(top_p), - top_k=top_k, - num_beams=num_beams, - do_sample=do_sample, - repetition_penalty=float(repetition_penalty), - num_return_sequences=num_return_sequences, - renormalize_logits=True, - remove_invalid_values=True, - **kwargs, - ) - - gen_kwargs = dict(input_ids=input_ids, - generation_config=generation_config, - return_dict_in_generate=True, - output_scores=True, - max_new_tokens=max_new_tokens, # prompt + new - min_new_tokens=min_new_tokens, # prompt + new - early_stopping=early_stopping, # False, True, "never" - max_time=max_time, - stopping_criteria=stopping_criteria, - ) - if 'gpt2' in base_model.lower(): - gen_kwargs.update(dict(bos_token_id=tokenizer.bos_token_id, pad_token_id=tokenizer.eos_token_id)) - elif 'mbart-' in base_model.lower(): - assert tgt_lang is not None - tgt_lang = languages_covered()[tgt_lang] - gen_kwargs.update(dict(forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang])) - else: - gen_kwargs.update(dict(pad_token_id=tokenizer.eos_token_id)) - - decoder = functools.partial(tokenizer.decode, - skip_special_tokens=True, - clean_up_tokenization_spaces=True, - ) - decoder_raw = functools.partial(tokenizer.decode, - skip_special_tokens=False, - clean_up_tokenization_spaces=True, - ) - - with torch.no_grad(): - # decoded tokenized prompt can deviate from prompt due to special characters - inputs_decoded = decoder(input_ids[0]) - inputs_decoded_raw = decoder_raw(input_ids[0]) - if inputs_decoded == prompt: - # normal - pass - elif inputs_decoded.lstrip() == prompt.lstrip(): - # sometimes extra space in front, make prompt same for prompt removal - prompt = inputs_decoded - elif inputs_decoded_raw == prompt: - # some models specify special tokens that are part of normal prompt, so can't skip them - inputs_decoded_raw = inputs_decoded - decoder = decoder_raw - else: - print("WARNING: Special characters in prompt", flush=True) - if stream_output: - def generate(callback=None, **kwargs): - # re-order stopping so Stream first and get out all chunks before stop for other reasons - stopping_criteria0 = kwargs.get('stopping_criteria', StoppingCriteriaList()).copy() - kwargs['stopping_criteria'] = StoppingCriteriaList() - kwargs['stopping_criteria'].append(Stream(func=callback)) - for stopping_criteria1 in stopping_criteria0: - kwargs['stopping_criteria'].append(stopping_criteria1) - - try: - model.generate(**kwargs) - except torch.cuda.OutOfMemoryError as e: - print("GPU OOM: prompt: %s inputs_decoded: %s exception: %s" % (prompt, inputs_decoded, str(e)), - flush=True) - if kwargs['input_ids'] is not None: - kwargs['input_ids'].cpu() - kwargs['input_ids'] = None - traceback.print_exc() - clear_torch_cache() - return - except (Exception, RuntimeError) as e: - if 'Expected all tensors to be on the same device' in str(e) or \ - 'expected scalar type Half but found Float' in str(e) or \ - 'probability tensor contains either' in str(e) or \ - 'cublasLt ran into an error!' in str(e): - print( - "GPU Error: prompt: %s inputs_decoded: %s exception: %s" % (prompt, inputs_decoded, str(e)), - flush=True) - traceback.print_exc() - clear_torch_cache() - if raise_generate_gpu_exceptions: - raise - return - else: - raise - - decoded_output = None - for output in CallbackToGenerator(generate, callback=None, **gen_kwargs): - decoded_output = decoder(output) - if output[-1] in [tokenizer.eos_token_id]: - if debug: - print("HIT EOS", flush=True) - break - if any(ele in decoded_output for ele in hard_stop_list): - raise StopIteration - yield prompter.get_response(decoded_output, prompt=inputs_decoded, - sanitize_bot_response=sanitize_bot_response) - if save_dir and decoded_output: - save_generate_output(output=decoded_output, base_model=base_model, save_dir=save_dir) - else: - outputs = model.generate(**gen_kwargs) - outputs = [decoder(s) for s in outputs.sequences] - yield prompter.get_response(outputs, prompt=inputs_decoded, - sanitize_bot_response=sanitize_bot_response) - if save_dir and outputs and len(outputs) >= 1: - decoded_output = prompt + outputs[0] - save_generate_output(output=decoded_output, base_model=base_model, save_dir=save_dir) - - -def get_generate_params(model_lower, chat, - stream_output, show_examples, - prompt_type, temperature, top_p, top_k, num_beams, - max_new_tokens, min_new_tokens, early_stopping, max_time, - repetition_penalty, num_return_sequences, - do_sample): - use_defaults = False - use_default_examples = True - examples = [] - task_info = f"{prompt_type}" - if model_lower: - print(f"Using Model {model_lower}", flush=True) - else: - print("No model defined yet", flush=True) - - min_new_tokens = min_new_tokens if min_new_tokens is not None else 0 - early_stopping = early_stopping if early_stopping is not None else False - max_time_defaults = 60 * 3 - max_time = max_time if max_time is not None else max_time_defaults - - if not prompt_type and model_lower in inv_prompt_type_to_model_lower: - prompt_type = inv_prompt_type_to_model_lower[model_lower] - - # examples at first don't include chat, instruction_nochat, iinput_nochat, added at end - if show_examples is None: - if chat: - show_examples = False - else: - show_examples = True - - summarize_example1 = """Jeff: Can I train a ? Transformers model on Amazon SageMaker? -Philipp: Sure you can use the new Hugging Face Deep Learning Container. -Jeff: ok. -Jeff: and how can I get started? -Jeff: where can I find documentation? -Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face""" - - if 'bart-large-cnn-samsum' in model_lower or 'flan-t5-base-samsum' in model_lower: - placeholder_instruction = summarize_example1 - placeholder_input = "" - use_defaults = True - use_default_examples = False - examples += [ - [placeholder_instruction, "", "", stream_output, 'plain', 1.0, 1.0, 50, 1, 128, 0, False, max_time_defaults, - 1.0, 1, - False]] - task_info = "Summarization" - elif 't5-' in model_lower or 't5' == model_lower or 'flan-' in model_lower: - placeholder_instruction = "The square root of x is the cube root of y. What is y to the power of 2, if x = 4?" - placeholder_input = "" - use_defaults = True - use_default_examples = True - task_info = "Multi-Task: Q/A, translation, Chain-of-Thought, Logical Reasoning, Summarization, etc. Best to use task prefix as trained on, e.g. `translate English to German: ` (space after colon)" - elif 'mbart-' in model_lower: - placeholder_instruction = "The girl has long hair." - placeholder_input = "" - use_defaults = True - use_default_examples = False - examples += [ - [placeholder_instruction, "", "", stream_output, 'plain', 1.0, 1.0, 50, 1, 128, 0, False, max_time_defaults, - 1.0, 1, - False]] - elif 'gpt2' in model_lower: - placeholder_instruction = "The sky is" - placeholder_input = "" - prompt_type = prompt_type or 'plain' - use_default_examples = True # some will be odd "continuations" but can be ok - examples += [ - [placeholder_instruction, "", "", stream_output, 'plain', 1.0, 1.0, 50, 1, 128, 0, False, max_time_defaults, - 1.0, 1, - False]] - task_info = "Auto-complete phrase, code, etc." - use_defaults = True - else: - if chat: - placeholder_instruction = "Enter a question or imperative." - else: - placeholder_instruction = "Give detailed answer for whether Einstein or Newton is smarter." - placeholder_input = "" - if model_lower: - prompt_type = prompt_type or 'human_bot' - else: - prompt_type = '' - examples += [[summarize_example1, 'Summarize' if prompt_type not in ['plain', 'instruct_simple'] else '', "", - stream_output, prompt_type or 'plain', 0.1, 0.75, 40, 4, 256, 0, False, max_time_defaults, 1.0, 1, - False]] - task_info = "No task" - if prompt_type == 'instruct': - task_info = "Answer question or follow imperative as instruction with optionally input." - elif prompt_type == 'plain': - task_info = "Auto-complete phrase, code, etc." - elif prompt_type == 'human_bot': - if chat: - task_info = "Chat (Shift-Enter to give question/imperative, input concatenated with instruction)" - else: - task_info = "Ask question/imperative (input concatenated with instruction)" - - # revert to plain if still nothing - prompt_type = prompt_type or 'plain' - if use_defaults: - temperature = 1.0 if temperature is None else temperature - top_p = 1.0 if top_p is None else top_p - top_k = 40 if top_k is None else top_k - num_beams = num_beams or 1 - max_new_tokens = max_new_tokens or 128 - repetition_penalty = repetition_penalty or 1.07 - num_return_sequences = min(num_beams, num_return_sequences or 1) - do_sample = False if do_sample is None else do_sample - else: - temperature = 0.1 if temperature is None else temperature - top_p = 0.75 if top_p is None else top_p - top_k = 40 if top_k is None else top_k - if chat: - num_beams = num_beams or 1 - else: - num_beams = num_beams or 4 - max_new_tokens = max_new_tokens or 256 - repetition_penalty = repetition_penalty or 1.07 - num_return_sequences = min(num_beams, num_return_sequences or 1) - do_sample = False if do_sample is None else do_sample - # doesn't include chat, instruction_nochat, iinput_nochat, added later - params_list = ["", stream_output, prompt_type, temperature, top_p, top_k, num_beams, max_new_tokens, min_new_tokens, - early_stopping, max_time, repetition_penalty, num_return_sequences, do_sample] - - if use_default_examples: - examples += [ - ["Translate English to French", "Good morning"] + params_list, - ["Give detailed answer for whether Einstein or Newton is smarter.", ''] + params_list, - ["Explain in detailed list, all the best practices for coding in python.", ''] + params_list, - [ - "Create a markdown table with 3 rows for the primary colors, and 2 columns, with color name and hex codes.", - ''] + params_list, - ['Translate to German: My name is Arthur', ''] + params_list, - ["Please answer to the following question. Who is going to be the next Ballon d'or?", ''] + params_list, - ['Can Geoffrey Hinton have a conversation with George Washington? Give the rationale before answering.', - ''] + params_list, - ['Please answer the following question. What is the boiling point of Nitrogen?', ''] + params_list, - ['Answer the following yes/no question. Can you write a whole Haiku in a single tweet?', ''] + params_list, - ["Simplify the following expression: (False or False and True). Explain your answer.", ''] + params_list, - [ - "Premise: At my age you will probably have learnt one lesson. Hypothesis: It's not certain how many lessons you'll learn by your thirties. Does the premise entail the hypothesis?", - ''] + params_list, - ['The square root of x is the cube root of y. What is y to the power of 2, if x = 4?', ''] + params_list, - [ - 'Answer the following question by reasoning step by step. The cafeteria had 23 apples. If they used 20 for lunch, and bought 6 more, how many apple do they have?', - ''] + params_list, - ["""def area_of_rectangle(a: float, b: float): - \"\"\"Return the area of the rectangle.\"\"\"""", ''] + params_list, - ["""# a function in native python: -def mean(a): - return sum(a)/len(a) - -# the same function using numpy: -import numpy as np -def mean(a):""", ''] + params_list, - ["""X = np.random.randn(100, 100) -y = np.random.randint(0, 1, 100) - -# fit random forest classifier with 20 estimators""", ''] + params_list, - ] - - src_lang = "English" - tgt_lang = "Russian" - - # move to correct position - for example in examples: - example += [chat, '', ''] - # adjust examples if non-chat mode - if not chat: - example[eval_func_param_names.index('instruction_nochat')] = example[ - eval_func_param_names.index('instruction')] - example[eval_func_param_names.index('instruction')] = '' - - example[eval_func_param_names.index('iinput_nochat')] = example[eval_func_param_names.index('iinput')] - example[eval_func_param_names.index('iinput')] = '' - - return placeholder_instruction, placeholder_input, \ - stream_output, show_examples, \ - prompt_type, temperature, top_p, top_k, num_beams, \ - max_new_tokens, min_new_tokens, early_stopping, max_time, \ - repetition_penalty, num_return_sequences, \ - do_sample, \ - src_lang, tgt_lang, \ - examples, \ - task_info - - -def languages_covered(): - # https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt#languages-covered - covered = """Arabic (ar_AR), Czech (cs_CZ), German (de_DE), English (en_XX), Spanish (es_XX), Estonian (et_EE), Finnish (fi_FI), French (fr_XX), Gujarati (gu_IN), Hindi (hi_IN), Italian (it_IT), Japanese (ja_XX), Kazakh (kk_KZ), Korean (ko_KR), Lithuanian (lt_LT), Latvian (lv_LV), Burmese (my_MM), Nepali (ne_NP), Dutch (nl_XX), Romanian (ro_RO), Russian (ru_RU), Sinhala (si_LK), Turkish (tr_TR), Vietnamese (vi_VN), Chinese (zh_CN), Afrikaans (af_ZA), Azerbaijani (az_AZ), Bengali (bn_IN), Persian (fa_IR), Hebrew (he_IL), Croatian (hr_HR), Indonesian (id_ID), Georgian (ka_GE), Khmer (km_KH), Macedonian (mk_MK), Malayalam (ml_IN), Mongolian (mn_MN), Marathi (mr_IN), Polish (pl_PL), Pashto (ps_AF), Portuguese (pt_XX), Swedish (sv_SE), Swahili (sw_KE), Tamil (ta_IN), Telugu (te_IN), Thai (th_TH), Tagalog (tl_XX), Ukrainian (uk_UA), Urdu (ur_PK), Xhosa (xh_ZA), Galician (gl_ES), Slovene (sl_SI)""" - covered = covered.split(', ') - covered = {x.split(' ')[0]: x.split(' ')[1].replace(')', '').replace('(', '') for x in covered} - return covered - - -def test_test_prompt(prompt_type='instruct', data_point=0): - example_data_point = example_data_points[data_point] - example_data_point.pop('output', None) - return generate_prompt(example_data_point, prompt_type, False, False) - - -if __name__ == "__main__": - print(""" - WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 --master_port=1234 generate.py --base_model='EleutherAI/gpt-j-6B' --lora_weights=lora-alpaca_6B - python generate.py --base_model='EleutherAI/gpt-j-6B' --lora_weights='lora-alpaca_6B' - python generate.py --base_model='EleutherAI/gpt-neox-20b' --lora_weights='lora-alpaca_20B' - - # generate without lora weights, no prompt - python generate.py --base_model='EleutherAI/gpt-neox-20b' --prompt_type='plain' - python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='dai_faq' - - python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='dai_faq' --lora_weights='lora_20B_daifaq' - # OpenChatKit settings: - python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='human_bot --debug=True --num_beams=1 --temperature=0.6 --top_k=40 --top_p=1.0 - - python generate.py --base_model='distilgpt2' --prompt_type='plain' --debug=True --num_beams=1 --temperature=0.6 --top_k=40 --top_p=1.0 --share=False - python generate.py --base_model='t5-large' --prompt_type='simple_instruct' - python generate.py --base_model='philschmid/bart-large-cnn-samsum' - python generate.py --base_model='philschmid/flan-t5-base-samsum' - python generate.py --base_model='facebook/mbart-large-50-many-to-many-mmt' - - python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='human_bot' --lora_weights='GPT-NeoXT-Chat-Base-20B.merged.json.8_epochs.57b2892c53df5b8cefac45f84d019cace803ef26.28' - - must have 4*48GB GPU and run without 8bit in order for sharding to work with infer_devices=False - can also pass --prompt_type='human_bot' and model can somewhat handle instructions without being instruct tuned - python generate.py --base_model=decapoda-research/llama-65b-hf --load_8bit=False --infer_devices=False --prompt_type='human_bot' - - python generate.py --base_model=h2oai/h2ogpt-oig-oasst1-512-6.9b - - """, flush=True) - fire.Fire(main)