K00B404 commited on
Commit
62bb757
·
verified ·
1 Parent(s): 1257678

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -22
app.py CHANGED
@@ -1,27 +1,23 @@
1
-
2
- import os
3
- #os.system("pip install gradio[notebook]")
4
  import gradio as gr
 
5
 
6
- from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
7
-
8
-
9
- tokenizer = AutoTokenizer.from_pretrained("cognitivecomputations/dolphin-2_6-phi-2t5-base")
10
- model = AutoModelForSeq2SeqLM.from_pretrained("cognitivecomputations/dolphin-2_6-phi-2")
11
 
12
- def predict(input_text):
13
- inputs = tokenizer(input_text, return_tensors="pt")
14
- outputs = model.generate(**inputs)
15
- decoded_prediction = tokenizer.decode(outputs[0], skip_special_tokens=True)
16
- return decoded_prediction
 
17
 
18
- iface = gr.Interface(fn=predict,
19
- inputs=gr.inputs.Textbox(lines=2,
20
- placeholder="Enter your text..."),
21
- outputs="text",
22
- title="My First App",
23
- description="you are a good teacher of python code generation student models.",
24
- theme="dark",
25
- analytics_enabled=False)
26
 
27
- iface.launch()
 
 
 
 
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
 
4
+ # Load your teacher model
5
+ model_name = "cognitivecomputations-dolphin-2_6-phi-2"
6
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
7
+ model = AutoModelForCausalLM.from_pretrained(model_name)
 
8
 
9
+ def generate_response(prompt):
10
+ inputs = tokenizer(prompt, return_tensors="pt")
11
+ with torch.no_grad():
12
+ outputs = model.generate(**inputs, max_length=100)
13
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
14
+ return response
15
 
16
+ interface = gr.Interface(fn=generate_response,
17
+ inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your prompt here..."),
18
+ outputs="text",
19
+ title="Text Generation with Dolphin-2_6-Phi-2",
20
+ description="This model generates responses based on the input prompt. Try it out!")
 
 
 
21
 
22
+ if __name__ == "__main__":
23
+ interface.launch()