import sys import os prj_root_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.append(prj_root_path) from code_interpreter.JuypyterClient import JupyterNotebook from code_interpreter.BaseCodeInterpreter import BaseCodeInterpreter from utils.const import * from typing import List, Literal, Optional, Tuple, TypedDict, Dict from colorama import init, Fore, Style import copy import re import torch import transformers from transformers import LlamaForCausalLM, LlamaTokenizer from peft import PeftModel sys.path.append(os.path.dirname(__file__)) sys.path.append(os.path.dirname(os.path.abspath(__file__))) from finetuning.conversation_template import msg_to_code_result_tok_temp from utils.special_tok_llama2 import ( B_CODE, E_CODE, B_RESULT, E_RESULT, B_INST, E_INST, B_SYS, E_SYS, DEFAULT_PAD_TOKEN, DEFAULT_BOS_TOKEN, DEFAULT_EOS_TOKEN, DEFAULT_UNK_TOKEN, IGNORE_INDEX, ) import warnings warnings.filterwarnings("ignore", category=UserWarning, module="transformers") os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" class LlamaCodeInterpreter(BaseCodeInterpreter): def __init__( self, model_path: str, load_in_8bit: bool = False, load_in_4bit: bool = False, peft_model: Optional[str] = None, ): # build tokenizer self.tokenizer = LlamaTokenizer.from_pretrained( model_path, padding_side="right", use_fast=False, ) # Handle special tokens special_tokens_dict = dict() if self.tokenizer.pad_token is None: special_tokens_dict["pad_token"] = DEFAULT_PAD_TOKEN # 32000 if self.tokenizer.eos_token is None: special_tokens_dict["eos_token"] = DEFAULT_EOS_TOKEN # 2 if self.tokenizer.bos_token is None: special_tokens_dict["bos_token"] = DEFAULT_BOS_TOKEN # 1 if self.tokenizer.unk_token is None: special_tokens_dict["unk_token"] = DEFAULT_UNK_TOKEN self.tokenizer.add_special_tokens(special_tokens_dict) self.tokenizer.add_tokens( [B_CODE, E_CODE, B_RESULT, E_RESULT, B_INST, E_INST, B_SYS, E_SYS], special_tokens=True, ) self.model = LlamaForCausalLM.from_pretrained( model_path, device_map="auto", load_in_4bit=load_in_4bit, load_in_8bit=load_in_8bit, torch_dtype=torch.float16, ) self.model.resize_token_embeddings(len(self.tokenizer)) if peft_model is not None: peft_model = PeftModel.from_pretrained(self.model, peft_model) self.model = self.model.eval() self.dialog = [ { "role": "system", "content": CODE_INTERPRETER_SYSTEM_PROMPT + "\nUse code to answer", }, # {"role": "user", "content": "How can I use BeautifulSoup to scrape a website and extract all the URLs on a page?"}, # {"role": "assistant", "content": "I think I need to use beatifulsoup to find current korean president,"} ] self.nb = JupyterNotebook() self.MAX_CODE_OUTPUT_LENGTH = 3000 out = self.nb.add_and_run(TOOLS_CODE) # tool import print(out) def dialog_to_prompt(self, dialog: List[Dict]) -> str: full_str = msg_to_code_result_tok_temp(dialog) return full_str @torch.inference_mode() def generate( self, prompt: str = "[INST]\n###User : hi\n###Assistant :", max_new_tokens=512, do_sample: bool = True, use_cache: bool = True, top_p: float = 0.95, temperature: float = 0.1, top_k: int = 50, repetition_penalty: float = 1.0, ) -> str: # Get the model and tokenizer, and tokenize the user text. input_prompt = copy.deepcopy(prompt) inputs = self.tokenizer([prompt], return_tensors="pt") input_tokens_shape = inputs["input_ids"].shape[-1] eos_token_id = self.tokenizer.convert_tokens_to_ids(DEFAULT_EOS_TOKEN) e_code_token_id = self.tokenizer.convert_tokens_to_ids(E_CODE) output = self.model.generate( **inputs, max_new_tokens=max_new_tokens, do_sample=do_sample, top_p=top_p, temperature=temperature, use_cache=use_cache, top_k=top_k, repetition_penalty=repetition_penalty, eos_token_id=[ eos_token_id, e_code_token_id, ], # Stop generation at either EOS or E_CODE token )[0] generated_tokens = output[input_tokens_shape:] generated_text = self.tokenizer.decode(generated_tokens) return generated_text def extract_code_blocks(self, prompt: str) -> Tuple[bool, str]: pattern = re.escape(B_CODE) + r"(.*?)" + re.escape(E_CODE) matches = re.findall(pattern, prompt, re.DOTALL) if matches: # Return the last matched code block return True, matches[-1].strip() else: return False, "" def clean_code_output(self, output: str) -> str: if self.MAX_CODE_OUTPUT_LENGTH < len(output): return ( output[: self.MAX_CODE_OUTPUT_LENGTH // 5] + "...(skip)..." + output[-self.MAX_CODE_OUTPUT_LENGTH // 5 :] ) return output def chat(self, user_message: str, VERBOSE: bool = False, MAX_TRY=5): self.dialog.append({"role": "user", "content": user_message}) if VERBOSE: print( "###User : " + Fore.BLUE + Style.BRIGHT + user_message + Style.RESET_ALL ) print("\n###Assistant : ") # setup HAS_CODE = False # For now INST_END_TOK_FLAG = False full_generated_text = "" prompt = self.dialog_to_prompt(dialog=self.dialog) start_prompt = copy.deepcopy(prompt) prompt = f"{prompt} {E_INST}" generated_text = self.generate(prompt) full_generated_text += generated_text HAS_CODE, generated_code_block = self.extract_code_blocks(generated_text) attempt = 1 while HAS_CODE: if attempt > MAX_TRY: break # if no code then doesn't have to execute it # replace unknown thing to none generated_code_block = generated_code_block.replace("_", "").replace( "", "" ) code_block_output, error_flag = self.execute_code_and_return_output( f"{generated_code_block}" ) code_block_output = self.clean_code_output(code_block_output) generated_text = ( f"{generated_text}\n{B_RESULT}\n{code_block_output}\n{E_RESULT}\n" ) full_generated_text += f"\n{B_RESULT}\n{code_block_output}\n{E_RESULT}\n" first_code_block_pos = ( generated_text.find(generated_code_block) if generated_code_block else -1 ) text_before_first_code_block = ( generated_text if first_code_block_pos == -1 else generated_text[:first_code_block_pos] ) if VERBOSE: print(Fore.GREEN + text_before_first_code_block + Style.RESET_ALL) print(Fore.GREEN + generated_code_block + Style.RESET_ALL) print( Fore.YELLOW + f"\n{B_RESULT}\n{code_block_output}\n{E_RESULT}\n" + Style.RESET_ALL ) # prompt = f"{prompt} {E_INST}{generated_text}" prompt = f"{prompt}{generated_text}" generated_text = self.generate(prompt) HAS_CODE, generated_code_block = self.extract_code_blocks(generated_text) full_generated_text += generated_text attempt += 1 if VERBOSE: print(Fore.GREEN + generated_text + Style.RESET_ALL) self.dialog.append( { "role": "assistant", "content": full_generated_text.replace("_", "") .replace("", "") .replace("", ""), } ) return self.dialog[-1] if __name__ == "__main__": import random LLAMA2_MODEL_PATH = "./ckpt/llama-2-13b-chat" LLAMA2_MODEL_PATH = "meta-llama/Llama-2-70b-chat-hf" LLAMA2_FINETUNEED_PATH = "./output/llama-2-7b-chat-ci" interpreter = LlamaCodeInterpreter( model_path=LLAMA2_FINETUNEED_PATH, load_in_4bit=True ) output = interpreter.chat( user_message=random.choice( [ # "In a circle with center \( O \), \( AB \) is a chord such that the midpoint of \( AB \) is \( M \). A tangent at \( A \) intersects the extended segment \( OB \) at \( P \). If \( AM = 12 \) cm and \( MB = 12 \) cm, find the length of \( AP \)." # "A triangle \( ABC \) is inscribed in a circle (circumscribed). The sides \( AB \), \( BC \), and \( AC \) are tangent to the circle at points \( P \), \( Q \), and \( R \) respectively. If \( AP = 10 \) cm, \( BQ = 15 \) cm, and \( CR = 20 \) cm, find the radius of the circle.", # "Given an integer array nums, return the total number of contiguous subarrays that have a sum equal to 0.", "what is second largest city in japan?", # "Can you show me 120days chart of tesla from today to before 120?" ] ), VERBOSE=True, ) while True: input_char = input("Press 'q' to quit the dialog: ") if input_char.lower() == "q": break else: output = interpreter.chat(user_message=input_char, VERBOSE=True)