|
import os |
|
import gradio as gr |
|
import numpy as np |
|
import random |
|
from huggingface_hub import AsyncInferenceClient |
|
from translatepy import Translator |
|
import requests |
|
import re |
|
import asyncio |
|
from PIL import Image |
|
from gradio_client import Client, handle_file |
|
from huggingface_hub import login |
|
from gradio_imageslider import ImageSlider |
|
|
|
translator = Translator() |
|
HF_TOKEN = os.environ.get("HF_TOKEN") |
|
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER") |
|
MAX_SEED = np.iinfo(np.int32).max |
|
CSS = "footer { visibility: hidden; }" |
|
JS = "function () { gradioURL = window.location.href; if (!gradioURL.endsWith('?__theme=dark')) { window.location.replace(gradioURL + '?__theme=dark'); } }" |
|
|
|
def enable_lora(lora_add, basemodel): |
|
return basemodel if not lora_add else lora_add |
|
|
|
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed): |
|
if seed == -1: |
|
seed = random.randint(0, MAX_SEED) |
|
seed = int(seed) |
|
text = str(translator.translate(prompt, 'English')) + "," + lora_word |
|
client = AsyncInferenceClient() |
|
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model) |
|
return image, seed |
|
|
|
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora): |
|
model = enable_lora(lora_model, basemodel) if process_lora else basemodel |
|
image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed) |
|
image_path = "temp_image.jpg" |
|
image.save(image_path, format="JPEG") |
|
|
|
if process_upscale: |
|
upscale_image = get_upscale_finegrain(prompt, image_path, upscale_factor) |
|
else: |
|
upscale_image = image_path |
|
|
|
return [image_path, upscale_image] |
|
|
|
def get_upscale_finegrain(prompt, img_path, upscale_factor): |
|
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER) |
|
result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process") |
|
return result[1] |
|
|
|
css = """ |
|
#col-container{ |
|
margin: 0 auto; |
|
max-width: 1024px; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo: |
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown("Flux Upscaled +LORA") |
|
with gr.Row(): |
|
with gr.Column(scale=1.5): |
|
output_res = ImageSlider(label="Flux / Upscaled") |
|
with gr.Column(scale=0.8): |
|
prompt = gr.Textbox(label="Prompt") |
|
basemodel_choice = gr.Dropdown(label="Base Model", choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV"], value="black-forest-labs/FLUX.1-schnell") |
|
lora_model_choice = gr.Dropdown(label="LORA Model", choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora"], value="XLabs-AI/flux-RealismLora") |
|
process_lora = gr.Checkbox(label="Process LORA") |
|
process_upscale = gr.Checkbox(label="Process Upscale") |
|
upscale_factor = gr.Radio(label="UpScale Factor", choices=[2, 4, 8], value=2) |
|
|
|
with gr.Accordion(label="Advanced Options", open=False): |
|
width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=1280) |
|
height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=768) |
|
scales = gr.Slider(label="Guidance", minimum=3.5, maximum=7, step=0.1, value=3.5) |
|
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=24) |
|
seed = gr.Slider(label="Seeds", minimum=-1, maximum=MAX_SEED, step=1, value=-1) |
|
|
|
submit_btn = gr.Button("Submit", scale=1) |
|
submit_btn.click( |
|
fn=lambda: None, |
|
inputs=None, |
|
outputs=[output_res], |
|
queue=False |
|
).then( |
|
fn=gen, |
|
inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora], |
|
outputs=[output_res] |
|
) |