imageDresser / app.py
feishen29's picture
Upload app.py
b519ac5 verified
raw
history blame
18.1 kB
import sys
from PIL import Image
import gradio as gr
import numpy as np
import cv2
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from dressing_sd.pipelines.pipeline_sd import PipIpaControlNet
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
import spaces
from torchvision import transforms
import cv2
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
import diffusers
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
from adapter.attention_processor import CacheAttnProcessor2_0, RefSAttnProcessor2_0, RefLoraSAttnProcessor2_0, LoRAIPAttnProcessor2_0
from diffusers import ControlNetModel, UNet2DConditionModel, \
AutoencoderKL, DDIMScheduler
from adapter.resampler import Resampler
from transformers import (
CLIPImageProcessor,
CLIPVisionModelWithProjection,
CLIPTextModel,
CLIPTextModelWithProjection,
)
from diffusers import DDPMScheduler, AutoencoderKL, UniPCMultistepScheduler
from typing import List
import torch
import argparse
import os
from controlnet_aux import OpenposeDetector
from insightface.app import FaceAnalysis
from insightface.utils import face_align
# device = 'cuda:2' if torch.cuda.is_available() else 'cpu'
parser = argparse.ArgumentParser(description='IMAGDressing-v1')
# parser.add_argument('--if_resampler', type=bool, default=True)
parser.add_argument('--if_ipa', type=bool, default=True)
parser.add_argument('--if_control', type=bool, default=True)
# parser.add_argument('--pretrained_model_name_or_path',
# default="./ckpt/Realistic_Vision_V4.0_noVAE",
# type=str)
# parser.add_argument('--ip_ckpt',
# default="./ckpt/ip-adapter-faceid-plus_sd15.bin",
# type=str)
# parser.add_argument('--pretrained_image_encoder_path',
# default="./ckpt/image_encoder/",
# type=str)
# parser.add_argument('--pretrained_vae_model_path',
# default="./ckpt/sd-vae-ft-mse/",
# type=str)
# parser.add_argument('--model_ckpt',
# default="./ckpt/IMAGDressing-v1_512.pt",
# type=str)
# parser.add_argument('--output_path', type=str, default="./output_ipa_control_resampler")
# # parser.add_argument('--device', type=str, default="cuda:0")
args = parser.parse_args()
# svae path
# output_path = args.output_path
#
# if not os.path.exists(output_path):
# os.makedirs(output_path)
args.device = "cuda"
base_path = 'feishen29/IMAGDressing-v1'
vae = AutoencoderKL.from_pretrained('./ckpt/sd-vae-ft-mse/').to(dtype=torch.float16, device=args.device)
tokenizer = CLIPTokenizer.from_pretrained("./ckpt/tokenizer")
text_encoder = CLIPTextModel.from_pretrained("./ckpt/text_encoder").to(dtype=torch.float16, device=args.device)
image_encoder = CLIPVisionModelWithProjection.from_pretrained('./ckpt/image_encoder/').to(dtype=torch.float16, device=args.device)
unet = UNet2DConditionModel.from_pretrained("./ckpt/unet").to(dtype=torch.float16,device=args.device)
# image_face_fusion = pipeline('face_fusion_torch', model='damo/cv_unet_face_fusion_torch', model_revision='v1.0.3')
#face_model
app = FaceAnalysis(model_path='./ckpt/buffalo_l.zip', providers=[('CUDAExecutionProvider', {"device_id": args.device})]) ##使用GPU:0, 默认使用buffalo_l就可以了
app.prepare(ctx_id=0, det_size=(640, 640))
# def ref proj weight
image_proj = Resampler(
dim=unet.config.cross_attention_dim,
depth=4,
dim_head=64,
heads=12,
num_queries=16,
embedding_dim=image_encoder.config.hidden_size,
output_dim=unet.config.cross_attention_dim,
ff_mult=4
)
image_proj = image_proj.to(dtype=torch.float16, device=args.device)
# set attention processor
attn_procs = {}
st = unet.state_dict()
for name in unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
# lora_rank = hidden_size // 2 # args.lora_rank
if cross_attention_dim is None:
attn_procs[name] = RefLoraSAttnProcessor2_0(name, hidden_size)
else:
attn_procs[name] = LoRAIPAttnProcessor2_0(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim)
unet.set_attn_processor(attn_procs)
adapter_modules = torch.nn.ModuleList(unet.attn_processors.values())
adapter_modules = adapter_modules.to(dtype=torch.float16, device=args.device)
del st
ref_unet = UNet2DConditionModel.from_pretrained("./ckpt/unet").to(
dtype=torch.float16,
device=args.device)
ref_unet.set_attn_processor(
{name: CacheAttnProcessor2_0() for name in ref_unet.attn_processors.keys()}) # set cache
# weights load
model_sd = torch.load('./ckpt/IMAGDressing-v1_512.pt', map_location="cpu")["module"]
ref_unet_dict = {}
unet_dict = {}
image_proj_dict = {}
adapter_modules_dict = {}
for k in model_sd.keys():
if k.startswith("ref_unet"):
ref_unet_dict[k.replace("ref_unet.", "")] = model_sd[k]
elif k.startswith("unet"):
unet_dict[k.replace("unet.", "")] = model_sd[k]
elif k.startswith("proj"):
image_proj_dict[k.replace("proj.", "")] = model_sd[k]
elif k.startswith("adapter_modules") and 'ref' in k:
adapter_modules_dict[k.replace("adapter_modules.", "")] = model_sd[k]
else:
print(k)
ref_unet.load_state_dict(ref_unet_dict)
image_proj.load_state_dict(image_proj_dict)
adapter_modules.load_state_dict(adapter_modules_dict, strict=False)
noise_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
# noise_scheduler = UniPCMultistepScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler")
control_net_openpose = ControlNetModel.from_pretrained(
"./ckpt/control_v11p_sd15_openpose",
torch_dtype=torch.float16).to(device=args.device)
# pipe = PipIpaControlNet(unet=unet, reference_unet=ref_unet, vae=vae, tokenizer=tokenizer,
# text_encoder=text_encoder, image_encoder=image_encoder,
# ip_ckpt=args.ip_ckpt,
# ImgProj=image_proj, controlnet=control_net_openpose,
# scheduler=noise_scheduler,
# safety_checker=StableDiffusionSafetyChecker,
# feature_extractor=CLIPImageProcessor)
img_transform = transforms.Compose([
transforms.Resize([640, 512], interpolation=transforms.InterpolationMode.BILINEAR),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
])
openpose_model = OpenposeDetector.from_pretrained("./ckpt/ControlNet").to(args.device)
def resize_img(input_image, max_side=640, min_side=512, size=None,
pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
w, h = input_image.size
ratio = min_side / min(h, w)
w, h = round(ratio*w), round(ratio*h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
return input_image
@spaces.GPU
def dress_process(garm_img, face_img, pose_img, prompt, cloth_guidance_scale, caption_guidance_scale,
face_guidance_scale,self_guidance_scale, cross_guidance_scale,if_ipa, if_post, if_control, denoise_steps, seed=42):
# prompt = prompt + ', confident smile expression, fashion, best quality, amazing quality, very aesthetic'
if prompt is None:
prompt = "a photography of a model"
prompt = prompt + ', best quality, high quality'
print(prompt, cloth_guidance_scale, if_ipa, if_control, denoise_steps, seed)
clip_image_processor = CLIPImageProcessor()
# clothes_img = garm_img.convert("RGB")
if not garm_img:
raise gr.Error("请上传衣服 / Please upload garment")
clothes_img = resize_img(garm_img)
vae_clothes = img_transform(clothes_img).unsqueeze(0)
# print(vae_clothes.shape)
ref_clip_image = clip_image_processor(images=clothes_img, return_tensors="pt").pixel_values
if if_ipa:
# image = cv2.imread(face_img)
faces = app.get(face_img)
if not faces:
raise gr.Error("人脸检测异常,尝试其他肖像 / Abnormal face detection. Try another portrait")
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
face_image = face_align.norm_crop(face_img, landmark=faces[0].kps, image_size=224) # you can also segment the face
# face_img = face_image[:, :, ::-1]
# face_img = Image.fromarray(face_image.astype('uint8'))
# face_img.save('face.png')
face_clip_image = clip_image_processor(images=face_image, return_tensors="pt").pixel_values
else:
faceid_embeds = None
face_clip_image = None
if if_control:
pose_img = openpose_model(pose_img.convert("RGB"))
# pose_img.save('pose.png')
pose_image = diffusers.utils.load_image(pose_img)
else:
pose_image = None
# print(if_ipa, if_control)
# pipe, generator = prepare_pipeline(args, if_ipa, if_control, unet, ref_unet, vae, tokenizer, text_encoder,
# image_encoder, image_proj, control_net_openpose)
noise_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
# noise_scheduler = UniPCMultistepScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler")
pipe = PipIpaControlNet(unet=unet, reference_unet=ref_unet, vae=vae, tokenizer=tokenizer,
text_encoder=text_encoder, image_encoder=image_encoder,
ip_ckpt='./ckpt/ip-adapter-faceid-plus_sd15.bin',
ImgProj=image_proj, controlnet=control_net_openpose,
scheduler=noise_scheduler,
safety_checker=StableDiffusionSafetyChecker,
feature_extractor=CLIPImageProcessor)
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
output = pipe(
ref_image=vae_clothes,
prompt=prompt,
ref_clip_image=ref_clip_image,
pose_image=pose_image,
face_clip_image=face_clip_image,
faceid_embeds=faceid_embeds,
null_prompt='',
negative_prompt='bare, naked, nude, undressed, monochrome, lowres, bad anatomy, worst quality, low quality',
width=512,
height=640,
num_images_per_prompt=1,
guidance_scale=caption_guidance_scale,
image_scale=cloth_guidance_scale,
ipa_scale=face_guidance_scale,
s_lora_scale= self_guidance_scale,
c_lora_scale= cross_guidance_scale,
generator=generator,
num_inference_steps=denoise_steps,
).images
# if if_post and if_ipa:
# # 将 PIL 图像转换为 NumPy 数组
# output_array = np.array(output[0])
# # 将 RGB 图像转换为 BGR 图像
# bgr_array = cv2.cvtColor(output_array, cv2.COLOR_RGB2BGR)
# # 将 NumPy 数组转换为 PIL 图像
# bgr_image = Image.fromarray(bgr_array)
# result = image_face_fusion(dict(template=bgr_image, user=Image.fromarray(face_image.astype('uint8'))))
# return result[OutputKeys.OUTPUT_IMG]
return output[0]
example_path = os.path.dirname(__file__)
garm_list = os.listdir(os.path.join(example_path, "cloth", 'cloth'))
garm_list_path = [os.path.join(example_path, "cloth", 'cloth', garm) for garm in garm_list]
face_list = os.listdir(os.path.join(example_path, "face", 'face'))
face_list_path = [os.path.join(example_path, "face", 'face', face) for face in face_list]
pose_list = os.listdir(os.path.join(example_path, "pose", 'pose'))
pose_list_path = [os.path.join(example_path, "pose", 'pose', pose) for pose in pose_list]
##default human
image_blocks = gr.Blocks().queue()
with image_blocks as demo:
gr.Markdown("## IMAGDressing-v1: Customizable Virtual Dressing 👕👔👚")
gr.Markdown(
"Customize your virtual look with ease—adjust your appearance, pose, and garment as you like<br>."
"If you enjoy this project, please check out the [source codes](https://github.com/muzishen/IMAGDressing) and [model](https://huggingface.co/feishen29/IMAGDressing). Do not hesitate to give us a star. Thank you!<br>"
"Your support fuels the development of new versions."
)
with gr.Row():
with gr.Column():
garm_img = gr.Image(label="Garment", sources='upload', type="pil")
example = gr.Examples(
inputs=garm_img,
examples_per_page=8,
examples=garm_list_path)
with gr.Column():
imgs = gr.Image(label="Face", sources='upload', type="numpy")
with gr.Row():
is_checked_face = gr.Checkbox(label="Yes", info="Use face ", value=False)
example = gr.Examples(
inputs=imgs,
examples_per_page=10,
examples=face_list_path
)
with gr.Row():
is_checked_postprocess = gr.Checkbox(label="Yes", info="Use postprocess ", value=False)
with gr.Column():
pose_img = gr.Image(label="Pose", sources='upload', type="pil")
with gr.Row():
is_checked_pose = gr.Checkbox(label="Yes", info="Use pose ", value=False)
example = gr.Examples(
inputs=pose_img,
examples_per_page=8,
examples=pose_list_path)
# with gr.Column():
# # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
# masked_img = gr.Image(label="Masked image output", elem_id="masked-img", show_share_button=False)
with gr.Column():
# image_out = gr.Image(label="Output", elem_id="output-img", height=400)
image_out = gr.Image(label="Output", elem_id="output-img", show_share_button=False)
# Add usage tips below the output image
gr.Markdown("""
### Usage Tips
- **Upload Images**: Upload your desired garment, face, and pose images in the respective sections.
- **Select Options**: Use the checkboxes to include face and pose in the generated output.
- **View Output**: The resulting image will be displayed in the Output section.
- **Examples**: Click on example images to quickly load and test different configurations.
- **Advanced Settings**: Click on **Advanced Settings** to edit captions and adjust hyperparameters.
- **Feedback**: If you have any issues or suggestions, please let us know through the [GitHub repository](https://github.com/muzishen/IMAGDressing).
""")
with gr.Column():
try_button = gr.Button(value="Dressing")
with gr.Accordion(label="Advanced Settings", open=False):
with gr.Row(elem_id="prompt-container"):
with gr.Row():
prompt = gr.Textbox(placeholder="Description of prompt ex) A beautiful woman dress Short Sleeve Round Neck T-shirts",value='A beautiful woman',
show_label=False, elem_id="prompt")
# with gr.Row():
# neg_prompt = gr.Textbox(placeholder="Description of neg prompt ex) Short Sleeve Round Neck T-shirts",
# show_label=False, elem_id="neg_prompt")
with gr.Row():
cloth_guidance_scale = gr.Slider(label="Cloth guidance Scale", minimum=0.0, maximum=1.0, value=0.9, step=0.1,
visible=True)
with gr.Row():
caption_guidance_scale = gr.Slider(label="Prompt Guidance Scale", minimum=1, maximum=10., value=7.0, step=0.1,
visible=True)
with gr.Row():
face_guidance_scale = gr.Slider(label="Face Guidance Scale", minimum=0.0, maximum=2.0, value=0.9, step=0.1,
visible=True)
with gr.Row():
self_guidance_scale = gr.Slider(label="Self-Attention Lora Scale", minimum=0.0, maximum=0.5, value=0.2, step=0.1,
visible=True)
with gr.Row():
cross_guidance_scale = gr.Slider(label="Cross-Attention Lora Scale", minimum=0.0, maximum=0.5, value=0.2, step=0.1,
visible=True)
with gr.Row():
denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=50, value=30, step=1)
seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=20240508)
try_button.click(fn=dress_process, inputs=[garm_img, imgs, pose_img, prompt, cloth_guidance_scale, caption_guidance_scale, face_guidance_scale,self_guidance_scale, cross_guidance_scale, is_checked_face, is_checked_postprocess, is_checked_pose, denoise_steps, seed],
outputs=[image_out], api_name='IMAGDressing-v1')
image_blocks.launch()