Spaces:
Running
Running
Upload app.py
Browse files
app.py
CHANGED
@@ -41,50 +41,47 @@ from insightface.utils import face_align
|
|
41 |
|
42 |
# device = 'cuda:2' if torch.cuda.is_available() else 'cpu'
|
43 |
|
44 |
-
parser = argparse.ArgumentParser(description='
|
45 |
-
parser.add_argument('--if_resampler', type=bool, default=True)
|
46 |
parser.add_argument('--if_ipa', type=bool, default=True)
|
47 |
parser.add_argument('--if_control', type=bool, default=True)
|
48 |
|
49 |
# parser.add_argument('--pretrained_model_name_or_path',
|
50 |
# default="./ckpt/Realistic_Vision_V4.0_noVAE",
|
51 |
# type=str)
|
52 |
-
parser.add_argument('--ip_ckpt',
|
53 |
-
|
54 |
-
|
55 |
-
parser.add_argument('--pretrained_image_encoder_path',
|
56 |
-
|
57 |
-
|
58 |
-
parser.add_argument('--pretrained_vae_model_path',
|
59 |
-
|
60 |
-
|
61 |
-
parser.add_argument('--model_ckpt',
|
62 |
-
|
63 |
-
|
64 |
-
parser.add_argument('--output_path', type=str, default="./output_ipa_control_resampler")
|
65 |
-
# parser.add_argument('--device', type=str, default="cuda:0")
|
66 |
args = parser.parse_args()
|
67 |
|
68 |
# svae path
|
69 |
-
output_path = args.output_path
|
|
|
|
|
|
|
70 |
|
71 |
-
if not os.path.exists(output_path):
|
72 |
-
os.makedirs(output_path)
|
73 |
|
74 |
-
device = "cuda"
|
75 |
-
args.device = device
|
76 |
|
77 |
base_path = 'feishen29/IMAGDressing-v1'
|
78 |
|
79 |
generator = torch.Generator(device=args.device).manual_seed(42)
|
80 |
-
vae = AutoencoderKL.from_pretrained(
|
81 |
tokenizer = CLIPTokenizer.from_pretrained("./ckpt/tokenizer")
|
82 |
-
text_encoder = CLIPTextModel.from_pretrained("./ckpt/text_encoder").to(
|
83 |
-
|
84 |
-
|
85 |
-
dtype=torch.float16, device=args.device)
|
86 |
-
unet = UNet2DConditionModel.from_pretrained("./ckpt/unet").to(
|
87 |
-
dtype=torch.float16,device=args.device)
|
88 |
|
89 |
# image_face_fusion = pipeline('face_fusion_torch', model='damo/cv_unet_face_fusion_torch', model_revision='v1.0.3')
|
90 |
|
@@ -136,7 +133,7 @@ ref_unet.set_attn_processor(
|
|
136 |
{name: CacheAttnProcessor2_0() for name in ref_unet.attn_processors.keys()}) # set cache
|
137 |
|
138 |
# weights load
|
139 |
-
model_sd = torch.load(
|
140 |
|
141 |
ref_unet_dict = {}
|
142 |
unet_dict = {}
|
@@ -257,7 +254,7 @@ def dress_process(garm_img, face_img, pose_img, prompt, cloth_guidance_scale, ca
|
|
257 |
# noise_scheduler = UniPCMultistepScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler")
|
258 |
pipe = PipIpaControlNet(unet=unet, reference_unet=ref_unet, vae=vae, tokenizer=tokenizer,
|
259 |
text_encoder=text_encoder, image_encoder=image_encoder,
|
260 |
-
ip_ckpt=
|
261 |
ImgProj=image_proj, controlnet=control_net_openpose,
|
262 |
scheduler=noise_scheduler,
|
263 |
safety_checker=StableDiffusionSafetyChecker,
|
|
|
41 |
|
42 |
# device = 'cuda:2' if torch.cuda.is_available() else 'cpu'
|
43 |
|
44 |
+
parser = argparse.ArgumentParser(description='IMAGDressing-v1')
|
45 |
+
# parser.add_argument('--if_resampler', type=bool, default=True)
|
46 |
parser.add_argument('--if_ipa', type=bool, default=True)
|
47 |
parser.add_argument('--if_control', type=bool, default=True)
|
48 |
|
49 |
# parser.add_argument('--pretrained_model_name_or_path',
|
50 |
# default="./ckpt/Realistic_Vision_V4.0_noVAE",
|
51 |
# type=str)
|
52 |
+
# parser.add_argument('--ip_ckpt',
|
53 |
+
# default="./ckpt/ip-adapter-faceid-plus_sd15.bin",
|
54 |
+
# type=str)
|
55 |
+
# parser.add_argument('--pretrained_image_encoder_path',
|
56 |
+
# default="./ckpt/image_encoder/",
|
57 |
+
# type=str)
|
58 |
+
# parser.add_argument('--pretrained_vae_model_path',
|
59 |
+
# default="./ckpt/sd-vae-ft-mse/",
|
60 |
+
# type=str)
|
61 |
+
# parser.add_argument('--model_ckpt',
|
62 |
+
# default="./ckpt/IMAGDressing-v1_512.pt",
|
63 |
+
# type=str)
|
64 |
+
# parser.add_argument('--output_path', type=str, default="./output_ipa_control_resampler")
|
65 |
+
# # parser.add_argument('--device', type=str, default="cuda:0")
|
66 |
args = parser.parse_args()
|
67 |
|
68 |
# svae path
|
69 |
+
# output_path = args.output_path
|
70 |
+
#
|
71 |
+
# if not os.path.exists(output_path):
|
72 |
+
# os.makedirs(output_path)
|
73 |
|
|
|
|
|
74 |
|
75 |
+
args.device = "cuda"
|
|
|
76 |
|
77 |
base_path = 'feishen29/IMAGDressing-v1'
|
78 |
|
79 |
generator = torch.Generator(device=args.device).manual_seed(42)
|
80 |
+
vae = AutoencoderKL.from_pretrained('./ckpt/sd-vae-ft-mse/').to(dtype=torch.float16, device=args.device)
|
81 |
tokenizer = CLIPTokenizer.from_pretrained("./ckpt/tokenizer")
|
82 |
+
text_encoder = CLIPTextModel.from_pretrained("./ckpt/text_encoder").to(dtype=torch.float16, device=args.device)
|
83 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained('./ckpt/image_encoder/').to(dtype=torch.float16, device=args.device)
|
84 |
+
unet = UNet2DConditionModel.from_pretrained("./ckpt/unet").to(dtype=torch.float16,device=args.device)
|
|
|
|
|
|
|
85 |
|
86 |
# image_face_fusion = pipeline('face_fusion_torch', model='damo/cv_unet_face_fusion_torch', model_revision='v1.0.3')
|
87 |
|
|
|
133 |
{name: CacheAttnProcessor2_0() for name in ref_unet.attn_processors.keys()}) # set cache
|
134 |
|
135 |
# weights load
|
136 |
+
model_sd = torch.load('./ckpt/IMAGDressing-v1_512.pt', map_location="cpu")["module"]
|
137 |
|
138 |
ref_unet_dict = {}
|
139 |
unet_dict = {}
|
|
|
254 |
# noise_scheduler = UniPCMultistepScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler")
|
255 |
pipe = PipIpaControlNet(unet=unet, reference_unet=ref_unet, vae=vae, tokenizer=tokenizer,
|
256 |
text_encoder=text_encoder, image_encoder=image_encoder,
|
257 |
+
ip_ckpt='./ckpt/ip-adapter-faceid-plus_sd15.bin',
|
258 |
ImgProj=image_proj, controlnet=control_net_openpose,
|
259 |
scheduler=noise_scheduler,
|
260 |
safety_checker=StableDiffusionSafetyChecker,
|