feishen29 commited on
Commit
2afb5eb
·
verified ·
1 Parent(s): 3e93cb0

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -11
app.py CHANGED
@@ -80,7 +80,7 @@ text_encoder = CLIPTextModel.from_pretrained("SG161222/Realistic_Vision_V4.0_noV
80
  image_encoder = CLIPVisionModelWithProjection.from_pretrained("h94/IP-Adapter", subfolder="models/image_encoder").to(dtype=torch.float16, device=args.device)
81
  unet = UNet2DConditionModel.from_pretrained("SG161222/Realistic_Vision_V4.0_noVAE", subfolder="unet").to(dtype=torch.float16,device=args.device)
82
 
83
- # image_face_fusion = pipeline('face_fusion_torch', model='damo/cv_unet_face_fusion_torch', model_revision='v1.0.3')
84
 
85
  #face_model
86
  app = FaceAnalysis(model_path="buffalo_l", providers=[('CUDAExecutionProvider', {"device_id": args.device})]) ##使用GPU:0, 默认使用buffalo_l就可以了
@@ -278,18 +278,18 @@ def dress_process(garm_img, face_img, pose_img, prompt, cloth_guidance_scale, ca
278
  num_inference_steps=denoise_steps,
279
  ).images
280
 
281
- # if if_post and if_ipa:
282
- # # 将 PIL 图像转换为 NumPy 数组
283
- # output_array = np.array(output[0])
284
- # # 将 RGB 图像转换为 BGR 图像
285
- # bgr_array = cv2.cvtColor(output_array, cv2.COLOR_RGB2BGR)
286
- # # 将 NumPy 数组转换为 PIL 图像
287
- # bgr_image = Image.fromarray(bgr_array)
288
- # result = image_face_fusion(dict(template=bgr_image, user=Image.fromarray(face_image.astype('uint8'))))
289
- # return result[OutputKeys.OUTPUT_IMG]
290
  return output[0]
291
 
292
- base_path = 'yisol/IDM-VTON'
293
  example_path = os.path.join(os.path.dirname(__file__), 'example')
294
 
295
  garm_list = os.listdir(os.path.join(example_path,"cloth"))
 
80
  image_encoder = CLIPVisionModelWithProjection.from_pretrained("h94/IP-Adapter", subfolder="models/image_encoder").to(dtype=torch.float16, device=args.device)
81
  unet = UNet2DConditionModel.from_pretrained("SG161222/Realistic_Vision_V4.0_noVAE", subfolder="unet").to(dtype=torch.float16,device=args.device)
82
 
83
+ image_face_fusion = pipeline('face_fusion_torch', model='damo/cv_unet_face_fusion_torch', model_revision='v1.0.3')
84
 
85
  #face_model
86
  app = FaceAnalysis(model_path="buffalo_l", providers=[('CUDAExecutionProvider', {"device_id": args.device})]) ##使用GPU:0, 默认使用buffalo_l就可以了
 
278
  num_inference_steps=denoise_steps,
279
  ).images
280
 
281
+ if if_post and if_ipa:
282
+ # 将 PIL 图像转换为 NumPy 数组
283
+ output_array = np.array(output[0])
284
+ # 将 RGB 图像转换为 BGR 图像
285
+ bgr_array = cv2.cvtColor(output_array, cv2.COLOR_RGB2BGR)
286
+ # 将 NumPy 数组转换为 PIL 图像
287
+ bgr_image = Image.fromarray(bgr_array)
288
+ result = image_face_fusion(dict(template=bgr_image, user=Image.fromarray(face_image.astype('uint8'))))
289
+ return result[OutputKeys.OUTPUT_IMG]
290
  return output[0]
291
 
292
+
293
  example_path = os.path.join(os.path.dirname(__file__), 'example')
294
 
295
  garm_list = os.listdir(os.path.join(example_path,"cloth"))