Spaces:
Runtime error
Runtime error
File size: 21,816 Bytes
2467132 8003b0e 3d6098f 8003b0e 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f fa7133d 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 3d6098f 2467132 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 |
"""
Build txtai workflows.
Based on this example: https://github.com/neuml/txtai/blob/master/examples/workflows.py
"""
import os
import nltk
import yaml
import pandas as pd
import streamlit as st
from txtai.embeddings import Documents, Embeddings
from txtai.pipeline import Segmentation, Summary, Tabular, Textractor, Translation
from txtai.workflow import ServiceTask, Task, UrlTask, Workflow
class Process:
"""
Container for an active Workflow process instance.
"""
@staticmethod
def get(components, data):
"""
Lookup or creates a new workflow process instance.
Args:
components: input components
data: initial data, only passed when indexing
Returns:
Process
"""
process = Process(data)
# Build workflow
with st.spinner("Building workflow...."):
process.build(components)
return process
def __init__(self, data):
"""
Creates a new Process.
Args:
data: initial data, only passed when indexing
"""
# Component options
self.components = {}
# Defined pipelines
self.pipelines = {}
# Current workflow
self.workflow = []
# Embeddings index params
self.embeddings = None
self.documents = None
self.data = data
def build(self, components):
"""
Builds a workflow using components.
Args:
components: list of components to add to workflow
"""
# pylint: disable=W0108
tasks = []
for component in components:
component = dict(component)
wtype = component.pop("type")
self.components[wtype] = component
if wtype == "embeddings":
self.embeddings = Embeddings({**component})
self.documents = Documents()
tasks.append(Task(self.documents.add, unpack=False))
elif wtype == "segmentation":
self.pipelines[wtype] = Segmentation(**self.components[wtype])
tasks.append(Task(self.pipelines[wtype]))
elif wtype == "service":
tasks.append(ServiceTask(**self.components[wtype]))
elif wtype == "summary":
self.pipelines[wtype] = Summary(component.pop("path"))
tasks.append(Task(lambda x: self.pipelines["summary"](x, **self.components["summary"])))
elif wtype == "tabular":
self.pipelines[wtype] = Tabular(**self.components[wtype])
tasks.append(Task(self.pipelines[wtype]))
elif wtype == "textractor":
self.pipelines[wtype] = Textractor(**self.components[wtype])
tasks.append(UrlTask(self.pipelines[wtype]))
elif wtype == "translation":
self.pipelines[wtype] = Translation()
tasks.append(Task(lambda x: self.pipelines["translation"](x, **self.components["translation"])))
self.workflow = Workflow(tasks)
def run(self, data):
"""
Runs a workflow using data as input.
Args:
data: input data
"""
if data and self.workflow:
# Build tuples for embedding index
if self.documents:
data = [(x, element, None) for x, element in enumerate(data)]
# Process workflow
for result in self.workflow(data):
if not self.documents:
st.write(result)
# Build embeddings index
if self.documents:
# Cache data
self.data = list(self.documents)
with st.spinner("Building embedding index...."):
self.embeddings.index(self.documents)
self.documents.close()
# Clear workflow
self.documents, self.pipelines, self.workflow = None, None, None
def search(self, query):
"""
Runs a search.
Args:
query: input query
"""
if self.embeddings and query:
st.markdown(
"""
<style>
table td:nth-child(1) {
display: none
}
table th:nth-child(1) {
display: none
}
table {text-align: left !important}
</style>
""",
unsafe_allow_html=True,
)
limit = min(5, len(self.data))
results = []
for result in self.embeddings.search(query, limit):
# Tuples are returned when an index doesn't have stored content
if isinstance(result, tuple):
uid, score = result
results.append({"text": self.find(uid), "score": f"{score:.2}"})
else:
if "id" in result and "text" in result:
result["text"] = self.content(result.pop("id"), result["text"])
if "score" in result and result["score"]:
result["score"] = f'{result["score"]:.2}'
results.append(result)
df = pd.DataFrame(results)
st.write(df.to_html(escape=False), unsafe_allow_html=True)
def find(self, key):
"""
Lookup record from cached data by uid key.
Args:
key: id to search for
Returns:
text for matching id
"""
# Lookup text by id
text = [text for uid, text, _ in self.data if uid == key][0]
return self.content(key, text)
def content(self, uid, text):
"""
Builds a content reference for uid and text.
Args:
uid: record id
text: record text
Returns:
content
"""
if uid and uid.lower().startswith("http"):
return f"<a href='{uid}' rel='noopener noreferrer' target='blank'>{text}</a>"
return text
class Application:
"""
Main application.
"""
def __init__(self, directory):
"""
Creates a new application.
"""
# Workflow configuration directory
self.directory = directory
def default(self, names):
"""
Gets default workflow index.
Args:
names: list of workflow names
Returns:
default workflow index
"""
# Get names as lowercase to match case-insensitive
lnames = [name.lower() for name in names]
# Get default workflow param
params = st.experimental_get_query_params()
index = params.get("default")
index = index[0].lower() if index else 0
# Lookup index of workflow name, add 1 to account for "--"
if index and index in lnames:
return lnames.index(index) + 1
# Workflow not found, default to index 0
return 0
def load(self, components):
"""
Load an existing workflow file.
Args:
components: list of components to load
Returns:
(names of components loaded, workflow config)
"""
with open(os.path.join(self.directory, "config.yml"), encoding="utf-8") as f:
config = yaml.safe_load(f)
names = [row["name"] for row in config]
files = [row["file"] for row in config]
selected = st.selectbox("Load workflow", ["--"] + names, self.default(names))
if selected != "--":
index = [x for x, name in enumerate(names) if name == selected][0]
with open(os.path.join(self.directory, files[index]), encoding="utf-8") as f:
workflow = yaml.safe_load(f)
st.markdown("---")
# Get tasks for first workflow
tasks = list(workflow["workflow"].values())[0]["tasks"]
selected = []
for task in tasks:
name = task.get("action", task.get("task"))
if name in components:
selected.append(name)
elif name in ["index", "upsert"]:
selected.append("embeddings")
return (selected, workflow)
return (None, None)
def state(self, key):
"""
Lookup a session state variable.
Args:
key: variable key
Returns:
variable value
"""
if key in st.session_state:
return st.session_state[key]
return None
def appsetting(self, workflow, name):
"""
Looks up an application configuration setting.
Args:
workflow: workflow configuration
name: setting name
Returns:
app setting value
"""
if workflow:
config = workflow.get("app")
if config:
return config.get(name)
return None
def setting(self, config, name, default=None):
"""
Looks up a component configuration setting.
Args:
config: component configuration
name: setting name
default: default setting value
Returns:
setting value
"""
return config.get(name, default) if config else default
def text(self, label, component, config, name, default=None):
"""
Create a new text input field.
Args:
label: field label
component: component name
config: component configuration
name: setting name
default: default setting value
Returns:
text input field value
"""
default = self.setting(config, name, default)
if not default:
default = ""
elif isinstance(default, list):
default = ",".join(default)
elif isinstance(default, dict):
default = ",".join(default.keys())
st.caption(label)
st.code(default, language="yaml")
return default
def number(self, label, component, config, name, default=None):
"""
Creates a new numeric input field.
Args:
label: field label
component: component name
config: component configuration
name: setting name
default: default setting value
Returns:
numeric value
"""
value = self.text(label, component, config, name, default)
return int(value) if value else None
def boolean(self, label, component, config, name, default=False):
"""
Creates a new checkbox field.
Args:
label: field label
component: component name
config: component configuration
name: setting name
default: default setting value
Returns:
boolean value
"""
default = self.setting(config, name, default)
st.caption(label)
st.markdown(":white_check_mark:" if default else ":white_large_square:")
return default
def select(self, label, component, config, name, options, default=0):
"""
Creates a new select box field.
Args:
label: field label
component: component name
config: component configuration
name: setting name
options: list of dropdown options
default: default setting value
Returns:
boolean value
"""
index = self.setting(config, name)
index = [x for x, option in enumerate(options) if option == default]
# Derive default index
default = index[0] if index else default
st.caption(label)
st.code(options[default], language="yaml")
return options[default]
def split(self, text):
"""
Splits text on commas and returns a list.
Args:
text: input text
Returns:
list
"""
return [x.strip() for x in text.split(",")]
def options(self, component, workflow, index):
"""
Extracts component settings into a component configuration dict.
Args:
component: component type
workflow: existing workflow, can be None
index: task index
Returns:
dict with component settings
"""
# pylint: disable=R0912, R0915
options = {"type": component}
# Lookup component configuration
# - Runtime components have config defined within tasks
# - Pipeline components have config defined at workflow root
config = None
if workflow:
if component in ["service", "translation"]:
# Service config is found in tasks section
tasks = list(workflow["workflow"].values())[0]["tasks"]
tasks = [task for task in tasks if task.get("task") == component or task.get("action") == component]
if tasks:
config = tasks[0]
else:
config = workflow.get(component)
if component == "embeddings":
st.markdown(f"** {index + 1}.) Embeddings Index** \n*Index workflow output*")
options["path"] = self.text("Embeddings model path", component, config, "path", "sentence-transformers/nli-mpnet-base-v2")
options["upsert"] = self.boolean("Upsert", component, config, "upsert")
options["content"] = self.boolean("Content", component, config, "content")
elif component in ("segmentation", "textractor"):
if component == "segmentation":
st.markdown(f"** {index + 1}.) Segment** \n*Split text into semantic units*")
else:
st.markdown(f"** {index + 1}.) Textract** \n*Extract text from documents*")
options["sentences"] = self.boolean("Split sentences", component, config, "sentences")
options["lines"] = self.boolean("Split lines", component, config, "lines")
options["paragraphs"] = self.boolean("Split paragraphs", component, config, "paragraphs")
options["join"] = self.boolean("Join tokenized", component, config, "join")
options["minlength"] = self.number("Min section length", component, config, "minlength")
elif component == "service":
st.markdown(f"** {index + 1}.) Service** \n*Extract data from an API*")
options["url"] = self.text("URL", component, config, "url")
options["method"] = self.select("Method", component, config, "method", ["get", "post"], 0)
options["params"] = self.text("URL parameters", component, config, "params")
options["batch"] = self.boolean("Run as batch", component, config, "batch", True)
options["extract"] = self.text("Subsection(s) to extract", component, config, "extract")
if options["params"]:
options["params"] = {key: None for key in self.split(options["params"])}
if options["extract"]:
options["extract"] = self.split(options["extract"])
elif component == "summary":
st.markdown(f"** {index + 1}.) Summary** \n*Abstractive text summarization*")
options["path"] = self.text("Model", component, config, "path", "sshleifer/distilbart-cnn-12-6")
options["minlength"] = self.number("Min length", component, config, "minlength")
options["maxlength"] = self.number("Max length", component, config, "maxlength")
elif component == "tabular":
st.markdown(f"** {index + 1}.) Tabular** \n*Split tabular data into rows and columns*")
options["idcolumn"] = self.text("Id columns", component, config, "idcolumn")
options["textcolumns"] = self.text("Text columns", component, config, "textcolumns")
options["content"] = self.text("Content", component, config, "content")
if options["textcolumns"]:
options["textcolumns"] = self.split(options["textcolumns"])
if options["content"]:
options["content"] = self.split(options["content"])
if len(options["content"]) == 1 and options["content"][0] == "1":
options["content"] = options["content"][0]
elif component == "translation":
st.markdown(f"** {index + 1}.) Translate** \n*Machine translation*")
options["target"] = self.text("Target language code", component, config, "args", "en")
st.markdown("---")
return options
def yaml(self, components):
"""
Builds a yaml string for components.
Args:
components: list of components to export to YAML
Returns:
(workflow name, YAML string)
"""
data = {"app": {"data": self.state("data"), "query": self.state("query")}}
tasks = []
name = None
for component in components:
component = dict(component)
name = wtype = component.pop("type")
if wtype == "embeddings":
upsert = component.pop("upsert")
data[wtype] = component
data["writable"] = True
name = "index"
tasks.append({"action": "upsert" if upsert else "index"})
elif wtype == "segmentation":
data[wtype] = component
tasks.append({"action": wtype})
elif wtype == "service":
config = dict(**component)
config["task"] = wtype
tasks.append(config)
elif wtype == "summary":
data[wtype] = {"path": component.pop("path")}
tasks.append({"action": wtype})
elif wtype == "tabular":
data[wtype] = component
tasks.append({"action": wtype})
elif wtype == "textractor":
data[wtype] = component
tasks.append({"action": wtype, "task": "url"})
elif wtype == "translation":
data[wtype] = {}
tasks.append({"action": wtype, "args": list(component.values())})
# Add in workflow
data["workflow"] = {name: {"tasks": tasks}}
return (name, yaml.dump(data))
def data(self, workflow):
"""
Gets input data.
Args:
workflow: workflow configuration
Returns:
input data
"""
# Get default data setting
data = self.appsetting(workflow, "data")
if not self.appsetting(workflow, "query"):
data = st.text_input("Input", value=data)
# Save data state
st.session_state["data"] = data
# Wrap data as list for workflow processing
return [data]
def query(self, workflow, index):
"""
Gets input query.
Args:
workflow: workflow configuration
index: True if this is an indexing workflow
Returns:
input query
"""
default = self.appsetting(workflow, "query")
default = default if default else ""
# Get query if this is an indexing workflow
query = st.text_input("Query", value=default) if index else None
# Save query state
st.session_state["query"] = query
return query
def process(self, workflow, components, index):
"""
Processes the current application action.
Args:
workflow: workflow configuration
components: workflow components
index: True if this is an indexing workflow
"""
# Get input data and initialize query
data = self.data(workflow)
query = self.query(workflow, index)
# Get workflow process
process = Process.get(components, data if index else None)
# Run workflow process
process.run(data)
# Run search
if index:
process.search(query)
def run(self):
"""
Runs Streamlit application.
"""
with st.sidebar:
st.markdown("# Workflow builder \n*Build and apply workflows to data* ")
st.markdown("Test workflows for Station. Read more about used data on [Hugging Face](https://huggingface.co/datasets/ag_news) and in the [Docs](https://neuml.github.io/txtai/workflow/).")
st.markdown("---")
# Component configuration
components = ["embeddings", "segmentation", "service", "summary", "tabular", "textractor", "translation"]
selected, workflow = self.load(components)
if selected:
# Get selected options
components = [self.options(component, workflow, x) for x, component in enumerate(selected)]
if selected:
# Process current action
self.process(workflow, components, "embeddings" in selected)
with st.sidebar:
# Generate export button after workflow is complete
_, config = self.yaml(components)
st.download_button("Export", config, file_name="workflow.yml", help="Export the API workflow as YAML")
else:
st.info("Select a workflow from the sidebar")
if __name__ == "__main__":
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# pylint: disable=W0702
try:
nltk.sent_tokenize("This is a test. Split")
except:
nltk.download("punkt")
# Create and run application
app = Application("workflows")
app.run()
|