File size: 7,237 Bytes
801501a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
from enum import Enum

import numpy as np
import torch
import trimesh

from salad.utils import thutil


def write_obj(name: str, vertices: np.ndarray, faces: np.ndarray):
    """
    name: filename
    vertices: (V,3)
    faces: (F,3) Assume the mesh is a triangle mesh.
    """
    vertices = thutil.th2np(vertices)
    faces = thutil.th2np(faces).astype(np.uint32)
    fout = open(name, "w")
    for ii in range(len(vertices)):
        fout.write(
            "v "
            + str(vertices[ii, 0])
            + " "
            + str(vertices[ii, 1])
            + " "
            + str(vertices[ii, 2])
            + "\n"
        )
    for ii in range(len(faces)):
        fout.write(
            "f "
            + str(faces[ii, 0] + 1)
            + " "
            + str(faces[ii, 1] + 1)
            + " "
            + str(faces[ii, 2] + 1)
            + "\n"
        )
    fout.close()


def write_obj_triangle(name: str, vertices: np.ndarray, triangles: np.ndarray):
    fout = open(name, "w")
    for ii in range(len(vertices)):
        fout.write(
            "v "
            + str(vertices[ii, 0])
            + " "
            + str(vertices[ii, 1])
            + " "
            + str(vertices[ii, 2])
            + "\n"
        )
    for ii in range(len(triangles)):
        fout.write(
            "f "
            + str(triangles[ii, 0] + 1)
            + " "
            + str(triangles[ii, 1] + 1)
            + " "
            + str(triangles[ii, 2] + 1)
            + "\n"
        )
    fout.close()


def write_obj_polygon(name: str, vertices: np.ndarray, polygons: np.ndarray):
    fout = open(name, "w")
    for ii in range(len(vertices)):
        fout.write(
            "v "
            + str(vertices[ii][0])
            + " "
            + str(vertices[ii][1])
            + " "
            + str(vertices[ii][2])
            + "\n"
        )
    for ii in range(len(polygons)):
        fout.write("f")
        for jj in range(len(polygons[ii])):
            fout.write(" " + str(polygons[ii][jj] + 1))
        fout.write("\n")
    fout.close()


def read_obj(name: str):
    verts = []
    faces = []
    with open(name, "r") as f:
        lines = [line.rstrip() for line in f]

        for line in lines:
            if line.startswith("v "):
                verts.append(np.float32(line.split()[1:4]))
            elif line.startswith("f "):
                faces.append(
                    np.int32([item.split("/")[0] for item in line.split()[1:4]])
                )

        v = np.vstack(verts)
        f = np.vstack(faces) - 1
        return v, f


def scene_as_mesh(scene_or_mesh):
    if isinstance(scene_or_mesh, trimesh.Scene):
        if len(scene_or_mesh.geometry) == 0:
            mesh = None
        else:
            mesh = trimesh.util.concatenate(
                tuple(
                    trimesh.Trimesh(vertices=g.vertices, faces=g.faces)
                    for g in scene_or_mesh.geometry.values()
                    if g.faces.shape[1] == 3
                )
            )
    else:
        mesh = scene_or_mesh

    return mesh


def get_center(verts):
    max_vals = verts.max(0)
    min_vals = verts.min(0)
    center = (max_vals + min_vals) / 2
    return center


def to_center(verts):
    verts -= get_center(verts)[None, :]
    return verts


def get_offset_and_scale(verts, radius=1.0):
    verts = thutil.th2np(verts)
    verts = verts.copy()

    offset = get_center(verts)[None, :]
    verts -= offset
    scale = 1 / np.linalg.norm(verts, axis=1).max() * radius

    return offset, scale


def normalize_mesh(mesh: trimesh.Trimesh):
    # unit cube normalization
    v, f = np.array(mesh.vertices), np.array(mesh.faces)
    maxv, minv = np.max(v, 0), np.min(v, 0)
    offset = minv
    v = v - offset
    scale = np.sqrt(np.sum((maxv - minv) ** 2))
    v = v / scale
    normed_mesh = trimesh.Trimesh(vertices=v, faces=f, process=False)
    return dict(mesh=normed_mesh, offset=offset, scale=scale)


def normalize_scene(scene: trimesh.Scene):
    mesh_merged = scene_as_mesh(scene)

    out = normalize_mesh(mesh_merged)
    offset = out["offset"]
    scale = out["scale"]

    submesh_normalized_list = []
    for i, submesh in enumerate(list(scene.geometry.values())):
        v, f = np.array(submesh.vertices), np.array(submesh.faces)
        v = v - offset
        v = v / scale
        submesh_normalized_list.append(trimesh.Trimesh(v, f))

    return trimesh.Scene(submesh_normalized_list)


class SampleBy(Enum):
    AREAS = 0
    FACES = 1
    HYB = 2


def get_faces_normals(mesh):
    if type(mesh) is not torch.Tensor:
        vs, faces = mesh
        vs_faces = vs[faces]
    else:
        vs_faces = mesh
    if vs_faces.shape[-1] == 2:
        vs_faces = torch.cat(
            (
                vs_faces,
                torch.zeros(
                    *vs_faces.shape[:2], 1, dtype=vs_faces.dtype, device=vs_faces.device
                ),
            ),
            dim=2,
        )
    face_normals = torch.cross(
        vs_faces[:, 1, :] - vs_faces[:, 0, :], vs_faces[:, 2, :] - vs_faces[:, 1, :]
    )
    return face_normals


def compute_face_areas(mesh):
    face_normals = get_faces_normals(mesh)
    face_areas = torch.norm(face_normals, p=2, dim=1)
    face_areas_ = face_areas.clone()
    face_areas_[torch.eq(face_areas_, 0)] = 1
    face_normals = face_normals / face_areas_[:, None]
    face_areas = 0.5 * face_areas
    return face_areas, face_normals


def sample_uvw(shape, device):
    u, v = torch.rand(*shape, device=device), torch.rand(*shape, device=device)
    mask = (u + v).gt(1)
    u[mask], v[mask] = -u[mask] + 1, -v[mask] + 1
    w = -u - v + 1
    uvw = torch.stack([u, v, w], dim=len(shape))
    return uvw


def sample_on_mesh(mesh, num_samples: int, face_areas=None, sample_s=SampleBy.HYB):
    vs, faces = mesh
    if faces is None:  # sample from pc
        uvw = None
        if vs.shape[0] < num_samples:
            chosen_faces_inds = torch.arange(vs.shape[0])
        else:
            chosen_faces_inds = torch.argsort(torch.rand(vs.shape[0]))[:num_samples]
        samples = vs[chosen_faces_inds]
    else:
        weighted_p = []
        if sample_s == SampleBy.AREAS or sample_s == SampleBy.HYB:
            if face_areas is None:
                face_areas, _ = compute_face_areas(mesh)
            face_areas[torch.isnan(face_areas)] = 0
            weighted_p.append(face_areas / face_areas.sum())
        if sample_s == SampleBy.FACES or sample_s == SampleBy.HYB:
            weighted_p.append(torch.ones(mesh[1].shape[0], device=mesh[0].device))
        chosen_faces_inds = [
            torch.multinomial(weights, num_samples // len(weighted_p), replacement=True)
            for weights in weighted_p
        ]
        if sample_s == SampleBy.HYB:
            chosen_faces_inds = torch.cat(chosen_faces_inds, dim=0)
        chosen_faces = faces[chosen_faces_inds]
        uvw = sample_uvw([num_samples], vs.device)
        samples = torch.einsum("sf,sfd->sd", uvw, vs[chosen_faces])
    return samples, chosen_faces_inds, uvw


def repair_normals(v, f):
    mesh = trimesh.Trimesh(v, f)
    trimesh.repair.fix_normals(mesh)
    v = mesh.vertices
    f = np.asarray(mesh.faces)
    return v, f