Spaces:
Sleeping
Sleeping
File size: 7,237 Bytes
801501a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
from enum import Enum
import numpy as np
import torch
import trimesh
from salad.utils import thutil
def write_obj(name: str, vertices: np.ndarray, faces: np.ndarray):
"""
name: filename
vertices: (V,3)
faces: (F,3) Assume the mesh is a triangle mesh.
"""
vertices = thutil.th2np(vertices)
faces = thutil.th2np(faces).astype(np.uint32)
fout = open(name, "w")
for ii in range(len(vertices)):
fout.write(
"v "
+ str(vertices[ii, 0])
+ " "
+ str(vertices[ii, 1])
+ " "
+ str(vertices[ii, 2])
+ "\n"
)
for ii in range(len(faces)):
fout.write(
"f "
+ str(faces[ii, 0] + 1)
+ " "
+ str(faces[ii, 1] + 1)
+ " "
+ str(faces[ii, 2] + 1)
+ "\n"
)
fout.close()
def write_obj_triangle(name: str, vertices: np.ndarray, triangles: np.ndarray):
fout = open(name, "w")
for ii in range(len(vertices)):
fout.write(
"v "
+ str(vertices[ii, 0])
+ " "
+ str(vertices[ii, 1])
+ " "
+ str(vertices[ii, 2])
+ "\n"
)
for ii in range(len(triangles)):
fout.write(
"f "
+ str(triangles[ii, 0] + 1)
+ " "
+ str(triangles[ii, 1] + 1)
+ " "
+ str(triangles[ii, 2] + 1)
+ "\n"
)
fout.close()
def write_obj_polygon(name: str, vertices: np.ndarray, polygons: np.ndarray):
fout = open(name, "w")
for ii in range(len(vertices)):
fout.write(
"v "
+ str(vertices[ii][0])
+ " "
+ str(vertices[ii][1])
+ " "
+ str(vertices[ii][2])
+ "\n"
)
for ii in range(len(polygons)):
fout.write("f")
for jj in range(len(polygons[ii])):
fout.write(" " + str(polygons[ii][jj] + 1))
fout.write("\n")
fout.close()
def read_obj(name: str):
verts = []
faces = []
with open(name, "r") as f:
lines = [line.rstrip() for line in f]
for line in lines:
if line.startswith("v "):
verts.append(np.float32(line.split()[1:4]))
elif line.startswith("f "):
faces.append(
np.int32([item.split("/")[0] for item in line.split()[1:4]])
)
v = np.vstack(verts)
f = np.vstack(faces) - 1
return v, f
def scene_as_mesh(scene_or_mesh):
if isinstance(scene_or_mesh, trimesh.Scene):
if len(scene_or_mesh.geometry) == 0:
mesh = None
else:
mesh = trimesh.util.concatenate(
tuple(
trimesh.Trimesh(vertices=g.vertices, faces=g.faces)
for g in scene_or_mesh.geometry.values()
if g.faces.shape[1] == 3
)
)
else:
mesh = scene_or_mesh
return mesh
def get_center(verts):
max_vals = verts.max(0)
min_vals = verts.min(0)
center = (max_vals + min_vals) / 2
return center
def to_center(verts):
verts -= get_center(verts)[None, :]
return verts
def get_offset_and_scale(verts, radius=1.0):
verts = thutil.th2np(verts)
verts = verts.copy()
offset = get_center(verts)[None, :]
verts -= offset
scale = 1 / np.linalg.norm(verts, axis=1).max() * radius
return offset, scale
def normalize_mesh(mesh: trimesh.Trimesh):
# unit cube normalization
v, f = np.array(mesh.vertices), np.array(mesh.faces)
maxv, minv = np.max(v, 0), np.min(v, 0)
offset = minv
v = v - offset
scale = np.sqrt(np.sum((maxv - minv) ** 2))
v = v / scale
normed_mesh = trimesh.Trimesh(vertices=v, faces=f, process=False)
return dict(mesh=normed_mesh, offset=offset, scale=scale)
def normalize_scene(scene: trimesh.Scene):
mesh_merged = scene_as_mesh(scene)
out = normalize_mesh(mesh_merged)
offset = out["offset"]
scale = out["scale"]
submesh_normalized_list = []
for i, submesh in enumerate(list(scene.geometry.values())):
v, f = np.array(submesh.vertices), np.array(submesh.faces)
v = v - offset
v = v / scale
submesh_normalized_list.append(trimesh.Trimesh(v, f))
return trimesh.Scene(submesh_normalized_list)
class SampleBy(Enum):
AREAS = 0
FACES = 1
HYB = 2
def get_faces_normals(mesh):
if type(mesh) is not torch.Tensor:
vs, faces = mesh
vs_faces = vs[faces]
else:
vs_faces = mesh
if vs_faces.shape[-1] == 2:
vs_faces = torch.cat(
(
vs_faces,
torch.zeros(
*vs_faces.shape[:2], 1, dtype=vs_faces.dtype, device=vs_faces.device
),
),
dim=2,
)
face_normals = torch.cross(
vs_faces[:, 1, :] - vs_faces[:, 0, :], vs_faces[:, 2, :] - vs_faces[:, 1, :]
)
return face_normals
def compute_face_areas(mesh):
face_normals = get_faces_normals(mesh)
face_areas = torch.norm(face_normals, p=2, dim=1)
face_areas_ = face_areas.clone()
face_areas_[torch.eq(face_areas_, 0)] = 1
face_normals = face_normals / face_areas_[:, None]
face_areas = 0.5 * face_areas
return face_areas, face_normals
def sample_uvw(shape, device):
u, v = torch.rand(*shape, device=device), torch.rand(*shape, device=device)
mask = (u + v).gt(1)
u[mask], v[mask] = -u[mask] + 1, -v[mask] + 1
w = -u - v + 1
uvw = torch.stack([u, v, w], dim=len(shape))
return uvw
def sample_on_mesh(mesh, num_samples: int, face_areas=None, sample_s=SampleBy.HYB):
vs, faces = mesh
if faces is None: # sample from pc
uvw = None
if vs.shape[0] < num_samples:
chosen_faces_inds = torch.arange(vs.shape[0])
else:
chosen_faces_inds = torch.argsort(torch.rand(vs.shape[0]))[:num_samples]
samples = vs[chosen_faces_inds]
else:
weighted_p = []
if sample_s == SampleBy.AREAS or sample_s == SampleBy.HYB:
if face_areas is None:
face_areas, _ = compute_face_areas(mesh)
face_areas[torch.isnan(face_areas)] = 0
weighted_p.append(face_areas / face_areas.sum())
if sample_s == SampleBy.FACES or sample_s == SampleBy.HYB:
weighted_p.append(torch.ones(mesh[1].shape[0], device=mesh[0].device))
chosen_faces_inds = [
torch.multinomial(weights, num_samples // len(weighted_p), replacement=True)
for weights in weighted_p
]
if sample_s == SampleBy.HYB:
chosen_faces_inds = torch.cat(chosen_faces_inds, dim=0)
chosen_faces = faces[chosen_faces_inds]
uvw = sample_uvw([num_samples], vs.device)
samples = torch.einsum("sf,sfd->sd", uvw, vs[chosen_faces])
return samples, chosen_faces_inds, uvw
def repair_normals(v, f):
mesh = trimesh.Trimesh(v, f)
trimesh.repair.fix_normals(mesh)
v = mesh.vertices
f = np.asarray(mesh.faces)
return v, f
|