Spaces:
Running
on
Zero
Running
on
Zero
Kohaku-Blueleaf
commited on
Commit
·
9746259
1
Parent(s):
3798f72
cast to float
Browse files
app.py
CHANGED
@@ -66,17 +66,16 @@ def gen(
|
|
66 |
encode_prompts(sdxl_pipe, full_prompt, DEFAULT_NEGATIVE_PROMPT)
|
67 |
)
|
68 |
set_seed(seed)
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
).images[0]
|
80 |
torch.cuda.empty_cache()
|
81 |
t1 = time_ns()
|
82 |
|
@@ -138,7 +137,9 @@ click "Next" button until you get the dragon girl you like.
|
|
138 |
value=list(DEFAULT_STYLE_LIST)[0],
|
139 |
)
|
140 |
submit = gr.Button("Next", variant="primary")
|
141 |
-
dtg_output = gr.TextArea(
|
|
|
|
|
142 |
cost_time = gr.Markdown()
|
143 |
with gr.Column(scale=4):
|
144 |
result = gr.Image(label="Result", type="numpy", interactive=False)
|
|
|
66 |
encode_prompts(sdxl_pipe, full_prompt, DEFAULT_NEGATIVE_PROMPT)
|
67 |
)
|
68 |
set_seed(seed)
|
69 |
+
result = sdxl_pipe(
|
70 |
+
prompt_embeds=prompt_embeds,
|
71 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
72 |
+
pooled_prompt_embeds=pooled_embeds2,
|
73 |
+
negative_pooled_prompt_embeds=neg_pooled_embeds2,
|
74 |
+
num_inference_steps=24,
|
75 |
+
width=1024,
|
76 |
+
height=1024,
|
77 |
+
guidance_scale=6.0,
|
78 |
+
).images[0]
|
|
|
79 |
torch.cuda.empty_cache()
|
80 |
t1 = time_ns()
|
81 |
|
|
|
137 |
value=list(DEFAULT_STYLE_LIST)[0],
|
138 |
)
|
139 |
submit = gr.Button("Next", variant="primary")
|
140 |
+
dtg_output = gr.TextArea(
|
141 |
+
label="DTG output", lines=9, show_copy_button=True
|
142 |
+
)
|
143 |
cost_time = gr.Markdown()
|
144 |
with gr.Column(scale=4):
|
145 |
result = gr.Image(label="Result", type="numpy", interactive=False)
|
diff.py
CHANGED
@@ -5,6 +5,8 @@ from diffusers import StableDiffusionXLKDiffusionPipeline
|
|
5 |
from k_diffusion.sampling import get_sigmas_polyexponential
|
6 |
from k_diffusion.sampling import sample_dpmpp_2m_sde
|
7 |
|
|
|
|
|
8 |
|
9 |
def set_timesteps_polyexponential(self, orig_sigmas, num_inference_steps, device=None):
|
10 |
self.num_inference_steps = num_inference_steps
|
@@ -19,6 +21,16 @@ def set_timesteps_polyexponential(self, orig_sigmas, num_inference_steps, device
|
|
19 |
self.sigmas = torch.cat([self.sigmas[:-2], self.sigmas.new_zeros([1])])
|
20 |
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def load_model(model_id="KBlueLeaf/Kohaku-XL-Epsilon", device="cuda"):
|
23 |
pipe: StableDiffusionXLKDiffusionPipeline
|
24 |
pipe = StableDiffusionXLKDiffusionPipeline.from_pretrained(
|
@@ -28,6 +40,7 @@ def load_model(model_id="KBlueLeaf/Kohaku-XL-Epsilon", device="cuda"):
|
|
28 |
set_timesteps_polyexponential, pipe.scheduler, pipe.scheduler.sigmas
|
29 |
)
|
30 |
pipe.sampler = partial(sample_dpmpp_2m_sde, eta=0.35, solver_type="heun")
|
|
|
31 |
return pipe
|
32 |
|
33 |
|
@@ -104,4 +117,3 @@ def encode_prompts(pipe: StableDiffusionXLKDiffusionPipeline, prompt, neg_prompt
|
|
104 |
neg_pooled_embeds2 = torch.mean(torch.stack(neg_pooled_embeds2, dim=0), dim=0)
|
105 |
|
106 |
return prompt_embeds, negative_prompt_embeds, pooled_embeds2, neg_pooled_embeds2
|
107 |
-
|
|
|
5 |
from k_diffusion.sampling import get_sigmas_polyexponential
|
6 |
from k_diffusion.sampling import sample_dpmpp_2m_sde
|
7 |
|
8 |
+
torch.set_float32_matmul_precision("mediun")
|
9 |
+
|
10 |
|
11 |
def set_timesteps_polyexponential(self, orig_sigmas, num_inference_steps, device=None):
|
12 |
self.num_inference_steps = num_inference_steps
|
|
|
21 |
self.sigmas = torch.cat([self.sigmas[:-2], self.sigmas.new_zeros([1])])
|
22 |
|
23 |
|
24 |
+
def model_forward(k_diffusion_model: torch.nn.Module):
|
25 |
+
orig_forward = k_diffusion_model.forward
|
26 |
+
def forward(*args, **kwargs):
|
27 |
+
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
28 |
+
result = orig_forward(*args, **kwargs)
|
29 |
+
return result.float()
|
30 |
+
|
31 |
+
return forward
|
32 |
+
|
33 |
+
|
34 |
def load_model(model_id="KBlueLeaf/Kohaku-XL-Epsilon", device="cuda"):
|
35 |
pipe: StableDiffusionXLKDiffusionPipeline
|
36 |
pipe = StableDiffusionXLKDiffusionPipeline.from_pretrained(
|
|
|
40 |
set_timesteps_polyexponential, pipe.scheduler, pipe.scheduler.sigmas
|
41 |
)
|
42 |
pipe.sampler = partial(sample_dpmpp_2m_sde, eta=0.35, solver_type="heun")
|
43 |
+
pipe.k_diffusion_model.forward = model_forward(pipe.k_diffusion_model)
|
44 |
return pipe
|
45 |
|
46 |
|
|
|
117 |
neg_pooled_embeds2 = torch.mean(torch.stack(neg_pooled_embeds2, dim=0), dim=0)
|
118 |
|
119 |
return prompt_embeds, negative_prompt_embeds, pooled_embeds2, neg_pooled_embeds2
|
|