File size: 7,669 Bytes
fb4710e 099741f fb4710e 099741f fb4710e 31eb136 fb4710e 31eb136 fb4710e 31eb136 3f96f05 099741f 745c0a6 099741f 31eb136 3f96f05 099741f ca71749 099741f ca71749 3f96f05 31eb136 099741f fb4710e bd28dd7 31eb136 745c0a6 bd28dd7 31eb136 bd28dd7 31eb136 bd28dd7 fb4710e 31eb136 fb4710e 31eb136 fb4710e 31eb136 ca71749 31eb136 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import io
import os
import pandas as pd
import streamlit as st
from concurrent.futures import ThreadPoolExecutor
from datetime import datetime
from langchain_community.document_loaders.pdf import PyPDFLoader
from langchain_core.documents.base import Document
from langchain_text_splitters import TokenTextSplitter
from process import Process
from tempfile import NamedTemporaryFile
from stqdm import stqdm
from validate import Validation
buffer = io.BytesIO()
st.cache_data()
st.set_page_config(page_title="NutriGenMe Paper Extractor")
st.title("NutriGenMe - Paper Extractor")
st.markdown("<div style='text-align: justify;text-justify: inter-word;'>NutriGenMe Paper Extractor is a tool designed to extract relevant information from genomic papers related to the NutriGenMe project. It utilizes natural language processing techniques to parse through documents and extract key data points, enabling researchers and practitioners to efficiently gather insights from a large corpus of literature.</div>", unsafe_allow_html=True)
st.divider()
st.markdown("<h4>Extraction</h4>", unsafe_allow_html=True)
col1, col2 = st.columns(2)
st.markdown("<h4>Validation</h4>", unsafe_allow_html=True)
col3, col4 = st.columns(2)
with col1:
models = (
'gpt-4-turbo',
'gemini-1.5-pro-latest',
# 'llama-3-sonar-large-32k-chat',
# 'mixtral-8x7b-instruct',
)
model = st.selectbox('Model selection:', models, key='model')
with col2:
tokens = (
8000,
16000,
24000
)
chunk_option = st.selectbox('Token amounts per process:', tokens, key='token')
chunk_overlap = 0
with col3:
models_val = (
'gpt-4-turbo',
'gemini-1.5-pro-latest',
'mixtral-8x7b-instruct',
# 'llama-3-sonar-large-32k-chat',
)
model_val = st.selectbox('Model validator selection:', models_val, key='model_val')
with col4:
api = st.toggle('Validate with API')
if api:
st.warning("""This validation process leverage external application programming interfaces (APIs) from NCBI and EBI to verify information.
These APIs may have limitations on their usage, so please exercise responsible use of this functionality.
If you opt to employ API validation and the process takes a long time (more than 1 hour), consider refreshing the page and proceeding without API validation.""", icon="⚠️")
st.divider()
st.markdown("<h4>Process</h4>", unsafe_allow_html=True)
uploaded_files = st.file_uploader("Upload Paper(s) here :", type="pdf", accept_multiple_files=True)
if uploaded_files:
submit = st.button("Get Result", key='submit')
if uploaded_files and submit:
with st.status("Extraction in progress ...", expanded=True) as status:
for uploaded_file in stqdm(uploaded_files):
start_time = datetime.now()
with NamedTemporaryFile(dir='.', suffix=".pdf", delete=eval(os.getenv('DELETE_TEMP_PDF', 'True'))) as pdf:
pdf.write(uploaded_file.getbuffer())
st.markdown(f"Start Extraction process at <code>{datetime.now().strftime('%H:%M')}</code>", unsafe_allow_html=True)
# Load Documents
loader = PyPDFLoader(pdf.name)
pages = loader.load()
chunk_size = 120000
chunk_overlap = 0
docs = pages
# Split Documents
if chunk_option:
docs = [Document('\n'.join([page.page_content for page in pages]))]
docs[0].metadata = {'source': pages[0].metadata['source']}
chunk_size = chunk_option
chunk_overlap = int(0.25 * chunk_size)
text_splitter = TokenTextSplitter.from_tiktoken_encoder(
chunk_size=chunk_size, chunk_overlap=chunk_overlap
)
chunks = text_splitter.split_documents(docs)
# Start extraction process in parallel
process = Process(model)
with ThreadPoolExecutor() as executor:
result_gsd = executor.submit(process.get_entity, (chunks, 'gsd'))
result_summ = executor.submit(process.get_entity, (chunks, 'summ'))
result = executor.submit(process.get_entity, (chunks, 'all'))
result_one = executor.submit(process.get_entity_one, [c.page_content for c in chunks[:1]])
result_table = executor.submit(process.get_table, pdf.name)
result_gsd = result_gsd.result()
result_summ = result_summ.result()
result = result.result()
result_one = result_one.result()
res_gene, res_snp, res_dis = result_table.result()
# Combine Result
result['Genes'] = res_gene + result_gsd['Genes']
result['SNPs'] = res_snp + result_gsd['SNPs']
result['Diseases'] = res_dis + result_gsd['Diseases']
result['Conclusion'] = result_summ
for k in result_one.keys():
result[k] = result_one[k]
if len(result['Genes']) == 0:
result['Genes'] = ['']
# Adjust Genes, SNPs, Diseases
num_rows = max(max(len(result['Genes']), len(result['SNPs'])), len(result['Diseases']))
for k in ['Genes', 'SNPs', 'Diseases']:
while len(result[k]) < num_rows:
result[k].append('')
# Temporary handling
result[k] = result[k][:num_rows]
# Arrange Column
result = {key: value if isinstance(value, list) else [value] * num_rows for key, value in result.items()}
dataframe = pd.DataFrame(result)
dataframe = dataframe[['Genes', 'SNPs', 'Diseases', 'Title', 'Authors', 'Publisher Name', 'Publication Year', 'Population', 'Sample Size', 'Study Methodology', 'Study Level', 'Conclusion']]
dataframe = dataframe[dataframe['Genes'].astype(bool)].reset_index(drop=True)
dataframe.reset_index(drop=True, inplace=True)
# Validate Result
st.markdown(f"Start Validation process at <code>{datetime.now().strftime('%H:%M')}</code>", unsafe_allow_html=True)
validation = Validation(model_val)
df, df_no_llm, df_clean = validation.validate(dataframe, api)
df.drop_duplicates(['Genes', 'SNPs'], inplace=True)
st.write("Success in ", round((datetime.now().timestamp() - start_time.timestamp()) / 60, 2), "minutes")
st.dataframe(df)
with pd.ExcelWriter(buffer, engine='xlsxwriter') as writer:
if api:
df.to_excel(writer, sheet_name='Result Cleaned API LLM')
df_no_llm.to_excel(writer, sheet_name='Result Cleaned API')
else:
df.to_excel(writer, sheet_name='Result Cleaned LLM')
df_clean.to_excel(writer, sheet_name='Result Cleaned')
dataframe.to_excel(writer, sheet_name='Original')
writer.close()
st.download_button(
label="Save Result",
data=buffer,
file_name=f"{uploaded_file.name.replace('.pdf', '')}_{chunk_option}_{model.split('-')[0]}_{model_val.split('-')[0]}.xlsx",
mime='application/vnd.ms-excel'
)
|