import io import os import pandas as pd import streamlit as st from concurrent.futures import ThreadPoolExecutor from datetime import datetime from langchain_community.document_loaders.pdf import PyPDFLoader from langchain_core.documents.base import Document from langchain_text_splitters import TokenTextSplitter from process import Process from tempfile import NamedTemporaryFile from stqdm import stqdm buffer = io.BytesIO() st.cache_data() st.set_page_config(page_title="NutriGenMe Paper Extractor") st.title("NutriGenMe - Paper Extraction") st.markdown("
In its latest version, the app is equipped to extract essential information from papers, including tables in both horizontal and vertical orientations, images, and text exclusively.

", unsafe_allow_html=True) uploaded_files = st.file_uploader("Upload Paper(s) here :", type="pdf", accept_multiple_files=True) col1, col2, col3 = st.columns(3) with col1: models = ( 'gpt-4-turbo', 'gemini-1.5-pro-latest', # 'llama-3-sonar-large-32k-chat', # 'mixtral-8x7b-instruct', ) model = st.selectbox( 'Model selection:', models, key='model' ) with col2: tokens = ( 8000, 16000, 24000 ) chunk_option = st.selectbox( 'Token amounts per process:', tokens, key='token' ) chunk_overlap = 0 with col3: models_val = ( 'gemini-1.5-pro-latest', 'gpt-4-turbo', 'mixtral-8x7b-instruct', # 'llama-3-sonar-large-32k-chat', ) model_val = st.selectbox( 'Model validator selection:', models_val, key='model_val' ) if uploaded_files: journals = [] parseButtonHV = st.button("Get Result", key='table_HV') if parseButtonHV: with st.status("Extraction in progress ...", expanded=True) as status: start_time = datetime.now() for uploaded_file in stqdm(uploaded_files): with NamedTemporaryFile(dir='.', suffix=".pdf", delete=eval(os.getenv('DELETE_TEMP_PDF', 'True'))) as pdf: pdf.write(uploaded_file.getbuffer()) # Load Documents loader = PyPDFLoader(pdf.name) pages = loader.load() chunk_size = 120000 chunk_overlap = 0 docs = pages # Split Documents if chunk_option: docs = [Document('\n'.join([page.page_content for page in pages]))] docs[0].metadata = {'source': pages[0].metadata['source']} chunk_size = chunk_option chunk_overlap = int(0.25 * chunk_size) text_splitter = TokenTextSplitter.from_tiktoken_encoder( chunk_size=chunk_size, chunk_overlap=chunk_overlap ) chunks = text_splitter.split_documents(docs) # Start extraction process in parallel process = Process(model, model_val) with ThreadPoolExecutor() as executor: result_gsd = executor.submit(process.get_entity, (chunks, 'gsd')) result_summ = executor.submit(process.get_entity, (chunks, 'summ')) result = executor.submit(process.get_entity, (chunks, 'all')) result_one = executor.submit(process.get_entity_one, [c.page_content for c in chunks[:1]]) result_table = executor.submit(process.get_table, pdf.name) result_gsd = result_gsd.result() result_summ = result_summ.result() result = result.result() result_one = result_one.result() res_gene, res_snp, res_dis = result_table.result() # Combine Result result['Genes'] = res_gene + result_gsd['Genes'] result['SNPs'] = res_snp + result_gsd['SNPs'] result['Diseases'] = res_dis + result_gsd['Diseases'] result['Conclusion'] = result_summ for k in result_one.keys(): result[k] = result_one[k] if len(result['Genes']) == 0: result['Genes'] = [''] num_rows = max(max(len(result['Genes']), len(result['SNPs'])), len(result['Diseases'])) # Adjust Genes, SNPs, Diseases for k in ['Genes', 'SNPs', 'Diseases']: while len(result[k]) < num_rows: result[k].append('') # Temporary handling result[k] = result[k][:num_rows] # Key Column result = {key: value if isinstance(value, list) else [value] * num_rows for key, value in result.items()} dataframe = pd.DataFrame(result) dataframe = dataframe[['Genes', 'SNPs', 'Diseases', 'Title', 'Authors', 'Publisher Name', 'Publication Year', 'Population', 'Sample Size', 'Study Methodology', 'Study Level', 'Conclusion']] dataframe = dataframe[dataframe['Genes'].astype(bool)].reset_index(drop=True) dataframe.drop_duplicates(['Genes', 'SNPs'], inplace=True) dataframe.reset_index(drop=True, inplace=True) # Validate Result df, df_no_llm, df_clean = process.validate(dataframe) end_time = datetime.now() st.write("Success in ", round((end_time.timestamp() - start_time.timestamp()) / 60, 2), "minutes") st.dataframe(df) with pd.ExcelWriter(buffer, engine='xlsxwriter') as writer: df.to_excel(writer, sheet_name='Result Cleaned API LLM') df_no_llm.to_excel(writer, sheet_name='Result Cleaned API') df_clean.to_excel(writer, sheet_name='Result Cleaned') dataframe.to_excel(writer, sheet_name='Original') writer.close() st.download_button( label="Save Result", data=buffer, file_name=f"{uploaded_file.name.replace('.pdf', '')}_{chunk_option}_{model.split('-')[0]}_{model_val.split('-')[0]}.xlsx", mime='application/vnd.ms-excel' )