import io import os import pandas as pd import streamlit as st from datetime import datetime from langchain_community.document_loaders.pdf import PyPDFLoader from langchain_core.documents.base import Document from langchain_text_splitters import TokenTextSplitter from process import get_entity, get_entity_one, get_table, validate from tempfile import NamedTemporaryFile from stqdm import stqdm from threading import Thread class CustomThread(Thread): def __init__(self, func, chunk): super().__init__() self.func = func self.chunk = chunk self.result = '' def run(self): self.result = self.func(self.chunk) buffer = io.BytesIO() st.cache_data() st.set_page_config(page_title="NutriGenMe Paper Extractor") st.title("NutriGenMe - Paper Extraction") st.markdown("
In its latest version, the app is equipped to extract essential information from papers, including tables in both horizontal and vertical orientations, images, and text exclusively.

", unsafe_allow_html=True) uploaded_files = st.file_uploader("Upload Paper(s) here :", type="pdf", accept_multiple_files=True) col1, col2 = st.columns(2) with col1: chunk_option = st.selectbox( 'Token amounts per process:', (24000, 16000, 8000), key='token' ) chunk_overlap = 0 with col2: model = st.selectbox( 'Model selection: (UNDER DEVELOPED)', # 128000, 32768, 1048576 ('gpt-4-turbo', 'llama-3-sonar-large-32k-chat', 'gemini-1.5-pro-latest'), key='model' ) if uploaded_files: journals = [] parseButtonHV = st.button("Get Result", key='table_HV') if parseButtonHV: with st.status("Extraction in progress ...", expanded=True) as status: start_time = datetime.now() for uploaded_file in stqdm(uploaded_files): with NamedTemporaryFile(dir='.', suffix=".pdf", delete=eval(os.getenv('DELETE_TEMP_PDF', 'True'))) as pdf: pdf.write(uploaded_file.getbuffer()) loader = PyPDFLoader(pdf.name) pages = loader.load() chunk_size = 120000 chunk_overlap = 0 docs = pages if chunk_option: docs = [Document('\n'.join([page.page_content for page in pages]))] docs[0].metadata = {'source': pages[0].metadata['source']} chunk_size = chunk_option chunk_overlap = int(0.25 * chunk_size) text_splitter = TokenTextSplitter.from_tiktoken_encoder( chunk_size=chunk_size, chunk_overlap=chunk_overlap ) chunks = text_splitter.split_documents(docs) threads = [] threads.append(CustomThread(get_entity, (chunks, 'gsd'))) threads.append(CustomThread(get_entity, (chunks, 'summ'))) threads.append(CustomThread(get_entity, (chunks, 'all'))) threads.append(CustomThread(get_entity_one, [c.page_content for c in chunks[:1]])) threads.append(CustomThread(get_table, pdf.name)) [t.start() for t in threads] [t.join() for t in threads] result_gsd = threads[0].result result_summ = threads[1].result result = threads[2].result result_one = threads[3].result res_gene, res_snp, res_dis = threads[4].result # Combine result['Genes'] = res_gene + result_gsd['Genes'] result['SNPs'] = res_snp + result_gsd['SNPs'] result['Diseases'] = res_dis + result_gsd['Diseases'] result['Conclusion'] = result_summ for k in result_one.keys(): result[k] = result_one[k] if len(result['Genes']) == 0: result['Genes'] = [''] num_rows = max(max(len(result['Genes']), len(result['SNPs'])), len(result['Diseases'])) # Adjust Genes, SNPs, Diseases for k in ['Genes', 'SNPs', 'Diseases']: while len(result[k]) < num_rows: result[k].append('') # Temporary handling result[k] = result[k][:num_rows] # Key Column result = {key: value if isinstance(value, list) else [value] * num_rows for key, value in result.items()} dataframe = pd.DataFrame(result) dataframe = dataframe[['Genes', 'SNPs', 'Diseases', 'Title', 'Authors', 'Publisher Name', 'Publication Year', 'Population', 'Sample Size', 'Study Methodology', 'Study Level', 'Conclusion']] dataframe.drop_duplicates(['Genes', 'SNPs'], inplace=True) dataframe.reset_index(drop=True, inplace=True) cleaned_df, cleaned_llm_df = validate(dataframe) end_time = datetime.now() st.write("Success in ", round((end_time.timestamp() - start_time.timestamp()) / 60, 2), "minutes") st.dataframe(cleaned_df) with pd.ExcelWriter(buffer, engine='xlsxwriter') as writer: cleaned_llm_df.to_excel(writer, sheet_name='Result with LLM') cleaned_df.to_excel(writer, sheet_name='Result') dataframe.to_excel(writer, sheet_name='Original') writer.close() st.download_button( label="Save Result", data=buffer, file_name=f"{uploaded_file.name.replace('.pdf', '')}_{chunk_option}.xlsx", mime='application/vnd.ms-excel' )