Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torchaudio | |
from datasets import load_dataset, load_metric | |
from transformers import ( | |
Wav2Vec2ForCTC, | |
Wav2Vec2Processor, | |
AutoTokenizer, | |
AutoModelWithLMHead | |
) | |
import torch | |
import re | |
import sys | |
import soundfile as sf | |
from utils import SpeechRecognition | |
sp = SpeechRecognition() | |
sp.load_model() | |
model_name = "voidful/wav2vec2-xlsr-multilingual-56" | |
device = "cuda" | |
processor_name = "voidful/wav2vec2-xlsr-multilingual-56" | |
import pickle | |
with open("lang_ids.pk", 'rb') as output: | |
lang_ids = pickle.load(output) | |
model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) | |
processor = Wav2Vec2Processor.from_pretrained(processor_name) | |
model.eval() | |
def load_file_to_data(file,sampling_rate=16_000): | |
batch = {} | |
speech, _ = torchaudio.load(file) | |
if sampling_rate != '16_000' or sampling_rate != '16000': | |
resampler = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16_000) | |
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() | |
batch["sampling_rate"] = resampler.new_freq | |
else: | |
batch["speech"] = speech.squeeze(0).numpy() | |
batch["sampling_rate"] = '16000' | |
return batch | |
def predict(data): | |
data=load_file_to_data(data,sampling_rate='16_000') | |
features = processor(data["speech"], sampling_rate=data["sampling_rate"], padding=True, return_tensors="pt") | |
input_values = features.input_values.to(device) | |
attention_mask = features.attention_mask.to(device) | |
with torch.no_grad(): | |
logits = model(input_values, attention_mask=attention_mask).logits | |
decoded_results = [] | |
for logit in logits: | |
pred_ids = torch.argmax(logit, dim=-1) | |
mask = pred_ids.ge(1).unsqueeze(-1).expand(logit.size()) | |
vocab_size = logit.size()[-1] | |
voice_prob = torch.nn.functional.softmax((torch.masked_select(logit, mask).view(-1,vocab_size)),dim=-1) | |
comb_pred_ids = torch.argmax(voice_prob, dim=-1) | |
decoded_results.append(processor.decode(comb_pred_ids)) | |
return decoded_results | |
def predict_lang_specific(data,lang_code): | |
data=load_file_to_data(data,sampling_rate='16_000') | |
features = processor(data["speech"], sampling_rate=data["sampling_rate"], padding=True, return_tensors="pt") | |
input_values = features.input_values.to(device) | |
attention_mask = features.attention_mask.to(device) | |
with torch.no_grad(): | |
logits = model(input_values, attention_mask=attention_mask).logits | |
decoded_results = [] | |
for logit in logits: | |
pred_ids = torch.argmax(logit, dim=-1) | |
mask = ~pred_ids.eq(processor.tokenizer.pad_token_id).unsqueeze(-1).expand(logit.size()) | |
vocab_size = logit.size()[-1] | |
voice_prob = torch.nn.functional.softmax((torch.masked_select(logit, mask).view(-1,vocab_size)),dim=-1) | |
filtered_input = pred_ids[pred_ids!=processor.tokenizer.pad_token_id].view(1,-1).to(device) | |
if len(filtered_input[0]) == 0: | |
decoded_results.append("") | |
else: | |
lang_mask = torch.empty(voice_prob.shape[-1]).fill_(0) | |
lang_index = torch.tensor(sorted(lang_ids[lang_code])) | |
lang_mask.index_fill_(0, lang_index, 1) | |
lang_mask = lang_mask.to(device) | |
comb_pred_ids = torch.argmax(lang_mask*voice_prob, dim=-1) | |
decoded_results.append(processor.decode(comb_pred_ids)) | |
return decoded_results | |
def recognition(audio_file): | |
print("audio_file", audio_file.name) | |
speech, rate = sp.load_speech_with_file(audio_file.name) | |
result = sp.predict_audio_file(speech) | |
print(result) | |
return result | |
#predict(load_file_to_data('audio file path',sampling_rate=16_000)) # beware of the audio file sampling rate | |
#predict_lang_specific(load_file_to_data('audio file path',sampling_rate=16_000),'en') # beware of the audio file sampling rate | |
with gr.Blocks() as demo: | |
gr.Markdown("multilingual Speech Recognition") | |
with gr.Tab("Auto"): | |
gr.Markdown("automatically detects your language") | |
inputs_speech =gr.Audio(source="upload", type="filepath", optional=True) | |
output_transcribe = gr.HTML(label="") | |
transcribe_audio= gr.Button("Submit") | |
with gr.Tab("manual"): | |
gr.Markdown("set your speech language") | |
inputs_speech1 =[ | |
gr.Audio(source="upload", type="filepath"), | |
gr.Dropdown(choices=["ar","as","br","ca","cnh","cs","cv","cy","de","dv","el","en","eo","es","et","eu","fa","fi","fr","fy-NL","ga-IE","hi","hsb","hu","ia","id","it","ja","ka","ky","lg","lt","lv","mn","mt","nl","or","pa-IN","pl","pt","rm-sursilv","rm-vallader","ro","ru","sah","sl","sv-SE","ta","th","tr","tt","uk","vi","zh-CN","zh-HK","zh-TW"] | |
,value="fa",label="language code") | |
] | |
output_transcribe1 = gr.Textbox(label="output") | |
transcribe_audio1= gr.Button("Submit") | |
with gr.Tab("Auto1"): | |
gr.Markdown("automatically detects your language") | |
inputs_speech2 = gr.Audio(label="Input Audio", type="file") | |
output_transcribe2 = gr.Textbox() | |
transcribe_audio2= gr.Button("Submit") | |
transcribe_audio.click(fn=predict, | |
inputs=inputs_speech, | |
outputs=output_transcribe) | |
transcribe_audio1.click(fn=predict_lang_specific, | |
inputs=inputs_speech1 , | |
outputs=output_transcribe1 ) | |
transcribe_audio2.click(fn=recognition, | |
inputs=inputs_speech2 , | |
outputs=output_transcribe2 ) | |
if __name__ == "__main__": | |
demo.launch(share=True) | |