import gradio as gr import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, AutoTokenizer, AutoModelWithLMHead ) import torch import re import sys import soundfile as sf model_name = "voidful/wav2vec2-xlsr-multilingual-56" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") processor_name = "voidful/wav2vec2-xlsr-multilingual-56" import pickle with open("lang_ids.pk", 'rb') as output: lang_ids = pickle.load(output) model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) processor = Wav2Vec2Processor.from_pretrained(processor_name) model.eval() def load_file_to_data(file,sampling_rate=16_000): batch = {} speech, _ = torchaudio.load(file) if sampling_rate != '16_000' or sampling_rate != '16000': resampler = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16_000) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq else: batch["speech"] = speech.squeeze(0).numpy() batch["sampling_rate"] = '16000' return batch def predict(data): data=load_file_to_data(data,sampling_rate=16_000) features = processor(data["speech"], sampling_rate=data["sampling_rate"], padding=True, return_tensors="pt") input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits decoded_results = [] for logit in logits: pred_ids = torch.argmax(logit, dim=-1) mask = pred_ids.ge(1).unsqueeze(-1).expand(logit.size()) vocab_size = logit.size()[-1] voice_prob = torch.nn.functional.softmax((torch.masked_select(logit, mask).view(-1,vocab_size)),dim=-1) comb_pred_ids = torch.argmax(voice_prob, dim=-1) decoded_results.append(processor.decode(comb_pred_ids)) return decoded_results def predict_lang_specific(data,lang_code): data=load_file_to_data(data,sampling_rate=16_000) features = processor(data["speech"], sampling_rate=data["sampling_rate"], padding=True, return_tensors="pt") input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits decoded_results = [] for logit in logits: pred_ids = torch.argmax(logit, dim=-1) mask = ~pred_ids.eq(processor.tokenizer.pad_token_id).unsqueeze(-1).expand(logit.size()) vocab_size = logit.size()[-1] voice_prob = torch.nn.functional.softmax((torch.masked_select(logit, mask).view(-1,vocab_size)),dim=-1) filtered_input = pred_ids[pred_ids!=processor.tokenizer.pad_token_id].view(1,-1).to(device) if len(filtered_input[0]) == 0: decoded_results.append("") else: lang_mask = torch.empty(voice_prob.shape[-1]).fill_(0) lang_index = torch.tensor(sorted(lang_ids[lang_code])) lang_mask.index_fill_(0, lang_index, 1) lang_mask = lang_mask.to(device) comb_pred_ids = torch.argmax(lang_mask*voice_prob, dim=-1) decoded_results.append(processor.decode(comb_pred_ids)) return decoded_results '''def recognition(audio_file): print("audio_file", audio_file.name) speech, rate = sp.load_speech_with_file(audio_file.name) result = sp.predict_audio_file(speech) print(result) return result ''' #predict(load_file_to_data('audio file path',sampling_rate=16_000)) # beware of the audio file sampling rate #predict_lang_specific(load_file_to_data('audio file path',sampling_rate=16_000),'en') # beware of the audio file sampling rate with gr.Blocks() as demo: gr.Markdown("multilingual Speech Recognition") with gr.Tab("Auto"): gr.Markdown("automatically detects your language") inputs_speech =gr.Audio(source="upload", type="filepath", optional=True) output_transcribe = gr.HTML(label="") transcribe_audio= gr.Button("Submit") with gr.Tab("manual"): gr.Markdown("set your speech language") inputs_speech1 =[ gr.Audio(source="upload", type="filepath"), gr.Dropdown(choices=["ar","as","br","ca","cnh","cs","cv","cy","de","dv","el","en","eo","es","et","eu","fa","fi","fr","fy-NL","ga-IE","hi","hsb","hu","ia","id","it","ja","ka","ky","lg","lt","lv","mn","mt","nl","or","pa-IN","pl","pt","rm-sursilv","rm-vallader","ro","ru","sah","sl","sv-SE","ta","th","tr","tt","uk","vi","zh-CN","zh-HK","zh-TW"] ,value="fa",label="language code") ] output_transcribe1 = gr.Textbox(label="output") transcribe_audio1= gr.Button("Submit") '''with gr.Tab("Auto1"): gr.Markdown("automatically detects your language") inputs_speech2 = gr.Audio(label="Input Audio", type="file") output_transcribe2 = gr.Textbox() transcribe_audio2= gr.Button("Submit")''' transcribe_audio.click(fn=predict, inputs=inputs_speech, outputs=output_transcribe) transcribe_audio1.click(fn=predict_lang_specific, inputs=inputs_speech1 , outputs=output_transcribe1 ) '''transcribe_audio2.click(fn=recognition, inputs=inputs_speech2 , outputs=output_transcribe2 )''' if __name__ == "__main__": demo.launch()