Spaces:
Running
on
T4
Running
on
T4
MikkoLipsanen
commited on
Create segment_image.py
Browse files- segment_image.py +340 -0
segment_image.py
ADDED
@@ -0,0 +1,340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from shapely.validation import make_valid
|
2 |
+
from shapely.geometry import Polygon
|
3 |
+
from ultralytics import YOLO
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from reading_order import OrderPolygons
|
8 |
+
|
9 |
+
class SegmentImage:
|
10 |
+
"""Class for segmenting document image regions and text lines."""
|
11 |
+
def __init__(self,
|
12 |
+
line_model_path,
|
13 |
+
device,
|
14 |
+
line_iou=0.5,
|
15 |
+
region_iou=0.5,
|
16 |
+
line_overlap=0.5,
|
17 |
+
line_nms_iou=0.7,
|
18 |
+
region_nms_iou=0.3,
|
19 |
+
line_conf_threshold=0.25,
|
20 |
+
region_conf_threshold=0.25,
|
21 |
+
region_model_path=None,
|
22 |
+
order_regions=True,
|
23 |
+
region_half_precision=False,
|
24 |
+
line_half_precision=False):
|
25 |
+
|
26 |
+
# Path to text line detection model
|
27 |
+
self.line_model_path = line_model_path
|
28 |
+
# Path to text region detection model
|
29 |
+
self.region_model_path = region_model_path
|
30 |
+
# Defines the IoU threshold used in the non-maximum suppression (NMS) process to
|
31 |
+
# determine which prediction boxes should be suppressed or discarded based on their overlap with other boxes
|
32 |
+
self.line_nms_iou = line_nms_iou
|
33 |
+
self.region_nms_iou = region_nms_iou
|
34 |
+
# Defines the IoU threshold for text lines
|
35 |
+
self.line_iou = line_iou
|
36 |
+
# Defines the IoU threshold for text regions
|
37 |
+
self.region_iou = region_iou
|
38 |
+
# Defines the extent of line polygon overlap used for merging the polygons
|
39 |
+
self.line_overlap = line_overlap
|
40 |
+
# Defines confidence threshold for line detection
|
41 |
+
self.line_conf_threshold = line_conf_threshold
|
42 |
+
# Defines confidence threshold for region detection
|
43 |
+
self.region_conf_threshold = region_conf_threshold
|
44 |
+
# Defines the device to be used ('cpu', gpu '0', gpu '1' etc.)
|
45 |
+
self.device = device
|
46 |
+
# Defines whether a reading order is also estimated for the region detections
|
47 |
+
self.order_regions = order_regions
|
48 |
+
# Defines whether half precision (FP16) is used by the region and line prediction models
|
49 |
+
self.region_half_precision = region_half_precision
|
50 |
+
self.line_half_precision = line_half_precision
|
51 |
+
self.order_poly = OrderPolygons()
|
52 |
+
# Initialize segmentation model(s)
|
53 |
+
self.line_model = self.init_line_model()
|
54 |
+
if self.region_model_path:
|
55 |
+
self.region_model = self.init_region_model()
|
56 |
+
|
57 |
+
def init_line_model(self):
|
58 |
+
"""Function for initializing the line detection model."""
|
59 |
+
try:
|
60 |
+
# Load the trained line detection model
|
61 |
+
line_model = YOLO(self.line_model_path)
|
62 |
+
return line_model
|
63 |
+
except Exception as e:
|
64 |
+
print('Failed to load the line detection model: %s' % e)
|
65 |
+
|
66 |
+
def init_region_model(self):
|
67 |
+
"""Function for initializing the region detection model."""
|
68 |
+
try:
|
69 |
+
# Load the trained line detection model
|
70 |
+
region_model = YOLO(self.region_model_path)
|
71 |
+
return region_model
|
72 |
+
except Exception as e:
|
73 |
+
print('Failed to load the region detection model: %s' % e)
|
74 |
+
|
75 |
+
def get_region_ids(self, coords, max_min, classes, names, box_confs, img_shape):
|
76 |
+
"""Function for creating unique id for each detected region."""
|
77 |
+
n = min(len(classes), len(coords))
|
78 |
+
res = []
|
79 |
+
for i in range(n):
|
80 |
+
# Creates a simple index-based id for each region
|
81 |
+
region_id = str(i)
|
82 |
+
# Extracts region name corresponding to the index
|
83 |
+
region_type = names[classes[i]]
|
84 |
+
poly_dict = {'coords': coords[i],
|
85 |
+
'max_min': max_min[i],
|
86 |
+
'class': str(classes[i]),
|
87 |
+
'name': region_type,
|
88 |
+
'conf': box_confs[i],
|
89 |
+
'id': region_id,
|
90 |
+
'img_shape': img_shape}
|
91 |
+
res.append(poly_dict)
|
92 |
+
return res
|
93 |
+
|
94 |
+
def get_max_min(self, polygons):
|
95 |
+
"""Creates an array with the minimum and maximum
|
96 |
+
x and y values of the input polygons."""
|
97 |
+
n_rows = len(polygons)
|
98 |
+
xy_array = np.zeros([n_rows, 4])
|
99 |
+
for i, poly in enumerate(polygons):
|
100 |
+
x = [point[0] for point in poly]
|
101 |
+
y = [point[1] for point in poly]
|
102 |
+
if x:
|
103 |
+
xy_array[i,0] = max(x)
|
104 |
+
xy_array[i,1] = min(x)
|
105 |
+
if y:
|
106 |
+
xy_array[i,2] = max(y)
|
107 |
+
xy_array[i,3] = min(y)
|
108 |
+
return xy_array
|
109 |
+
|
110 |
+
def validate_polygon(self, polygon):
|
111 |
+
""""Function for testing and correcting the validity of polygons."""
|
112 |
+
if len(polygon) > 2:
|
113 |
+
polygon = Polygon(polygon)
|
114 |
+
if not polygon.is_valid:
|
115 |
+
polygon = make_valid(polygon)
|
116 |
+
return polygon
|
117 |
+
else:
|
118 |
+
return None
|
119 |
+
|
120 |
+
def get_iou(self, poly1, poly2):
|
121 |
+
"""Function for calculating Intersection over Union (IoU) values."""
|
122 |
+
# If the polygons don't intersect, IoU is 0
|
123 |
+
iou = 0
|
124 |
+
poly1 = self.validate_polygon(poly1)
|
125 |
+
poly2 = self.validate_polygon(poly2)
|
126 |
+
|
127 |
+
if poly1 and poly2:
|
128 |
+
if poly1.intersects(poly2):
|
129 |
+
# Calculates intersection of the 2 polygons
|
130 |
+
intersect = poly1.intersection(poly2).area
|
131 |
+
# Calculates union of the 2 polygons
|
132 |
+
uni = poly1.union(poly2)
|
133 |
+
# Calculates intersection over union
|
134 |
+
iou = intersect / uni.area
|
135 |
+
return iou
|
136 |
+
|
137 |
+
def merge_polygons(self, polygons, iou_threshold, overlap_threshold = None):
|
138 |
+
"""Merges polygons that have an IoU value
|
139 |
+
above the given threshold."""
|
140 |
+
new_polygons = []
|
141 |
+
dropped = set()
|
142 |
+
# Loops over all input polygons and merges them if the
|
143 |
+
# IoU value is over the given threshold
|
144 |
+
for i in range(0, len(polygons)):
|
145 |
+
poly1 = self.validate_polygon(polygons[i])
|
146 |
+
merged = None
|
147 |
+
for j in range(i+1, len(polygons)):
|
148 |
+
poly2 = self.validate_polygon(polygons[j])
|
149 |
+
if poly1 and poly2:
|
150 |
+
if poly1.intersects(poly2):
|
151 |
+
overlap = False
|
152 |
+
intersect = poly1.intersection(poly2)
|
153 |
+
uni = poly1.union(poly2)
|
154 |
+
# Calculates intersection over union
|
155 |
+
iou = intersect.area / uni.area
|
156 |
+
if overlap_threshold:
|
157 |
+
overlap = intersect.area > (overlap_threshold * min(poly1.area, poly2.area))
|
158 |
+
if (iou > iou_threshold) or overlap:
|
159 |
+
if merged:
|
160 |
+
# If there are multiple overlapping polygons
|
161 |
+
# with IoU over the threshold, they are all merged together
|
162 |
+
merged = uni.union(merged)
|
163 |
+
dropped.add(j)
|
164 |
+
else:
|
165 |
+
merged = uni
|
166 |
+
# Polygons that are merged together are dropped from
|
167 |
+
# the list
|
168 |
+
dropped.add(i)
|
169 |
+
dropped.add(j)
|
170 |
+
if merged:
|
171 |
+
if merged.geom_type in ['GeometryCollection','MultiPolygon']:
|
172 |
+
for geom in merged.geoms:
|
173 |
+
if geom.geom_type == 'Polygon':
|
174 |
+
new_polygons.append(list(geom.exterior.coords))
|
175 |
+
elif merged.geom_type == 'Polygon':
|
176 |
+
new_polygons.append(list(merged.exterior.coords))
|
177 |
+
res = [i for j, i in enumerate(polygons) if j not in dropped]
|
178 |
+
res += new_polygons
|
179 |
+
|
180 |
+
return res
|
181 |
+
|
182 |
+
def get_region_preds(self, img):
|
183 |
+
"""Function for predicting text region coordinates."""
|
184 |
+
results = self.region_model.predict(source=img,
|
185 |
+
device=self.device,
|
186 |
+
conf=self.region_conf_threshold,
|
187 |
+
half=bool(self.region_half_precision),
|
188 |
+
iou=self.region_nms_iou)
|
189 |
+
results = results[0].cpu()
|
190 |
+
if results.masks:
|
191 |
+
# Extracts detected region polygons
|
192 |
+
coords = results.masks.xy
|
193 |
+
# Merge overlapping polygons
|
194 |
+
coords = self.merge_polygons(coords, self.region_iou)
|
195 |
+
# Maximum and minimum x and y axis values for detected polygons used for ordering the polygons
|
196 |
+
max_min = self.get_max_min(coords).tolist()
|
197 |
+
# Gets a list of the predicted class labels for detected regions
|
198 |
+
classes = results.boxes.cls.tolist()
|
199 |
+
# A dictionary with class ids as keys and class names as values
|
200 |
+
names = results.names
|
201 |
+
# Confidence values for detections
|
202 |
+
box_confs = results.boxes.conf.tolist()
|
203 |
+
# A tuple containing the shape of the original image
|
204 |
+
img_shape = results.orig_shape
|
205 |
+
res = self.get_region_ids(list(coords), max_min, classes, names, box_confs, img_shape)
|
206 |
+
return res
|
207 |
+
else:
|
208 |
+
return None
|
209 |
+
|
210 |
+
|
211 |
+
def get_line_preds(self, img):
|
212 |
+
"""Function for predicting text line coordinates."""
|
213 |
+
results = self.line_model.predict(source=img,
|
214 |
+
device=self.device,
|
215 |
+
conf=self.line_conf_threshold,
|
216 |
+
half=bool(self.line_half_precision),
|
217 |
+
iou=self.line_nms_iou)
|
218 |
+
results = results[0].cpu()
|
219 |
+
if results.masks:
|
220 |
+
# Detected text line polygons
|
221 |
+
coords = results.masks.xy
|
222 |
+
# Merge overlapping polygons
|
223 |
+
coords = self.merge_polygons(coords, self.line_iou, self.line_overlap)
|
224 |
+
# Maximum and minimum x and y axis values for detected polygons
|
225 |
+
max_min = self.get_max_min(coords).tolist()
|
226 |
+
# Confidence values for detections
|
227 |
+
box_confs = results.boxes.conf.tolist()
|
228 |
+
res_dict = {'coords': list(coords), 'max_min': max_min, 'confs': box_confs}
|
229 |
+
return res_dict
|
230 |
+
else:
|
231 |
+
return None
|
232 |
+
|
233 |
+
def get_dist(self, line_polygon, regions):
|
234 |
+
"""Function for finding the closest region to the text line."""
|
235 |
+
dist, reg_id = 1000000, None
|
236 |
+
line_polygon = self.validate_polygon(line_polygon)
|
237 |
+
|
238 |
+
if line_polygon:
|
239 |
+
for region in regions:
|
240 |
+
# Calculates dictance between line and regions polygons
|
241 |
+
region_polygon = self.validate_polygon(region['coords'])
|
242 |
+
if region_polygon:
|
243 |
+
line_reg_dist = line_polygon.distance(region_polygon)
|
244 |
+
if line_reg_dist < dist:
|
245 |
+
dist = line_reg_dist
|
246 |
+
reg_id = region['id']
|
247 |
+
return reg_id
|
248 |
+
|
249 |
+
def get_line_regions(self, lines, regions):
|
250 |
+
"""Function for connecting each text line to one region."""
|
251 |
+
lines_list = []
|
252 |
+
for i in range(len(lines['coords'])):
|
253 |
+
iou, reg_id, conf = 0, '', 0.0
|
254 |
+
max_min = [0.0, 0.0, 0.0, 0.0]
|
255 |
+
polygon = lines['coords'][i]
|
256 |
+
for region in regions:
|
257 |
+
line_reg_iou = self.get_iou(polygon, region['coords'])
|
258 |
+
if line_reg_iou > iou:
|
259 |
+
iou = line_reg_iou
|
260 |
+
reg_id = region['id']
|
261 |
+
# If line polygon does not intersect with any region, a distance metric is used for defining
|
262 |
+
# the region that the line belongs to
|
263 |
+
if iou == 0:
|
264 |
+
reg_id = self.get_dist(polygon, regions)
|
265 |
+
|
266 |
+
if (len(lines['max_min']) - 1) >= i:
|
267 |
+
max_min = lines['max_min'][i]
|
268 |
+
|
269 |
+
if (len(lines['confs']) - 1) >= i:
|
270 |
+
conf = lines['confs'][i]
|
271 |
+
|
272 |
+
new_line = {'polygon': polygon, 'reg_id': reg_id, 'max_min': max_min, 'conf': conf}
|
273 |
+
lines_list.append(new_line)
|
274 |
+
return lines_list
|
275 |
+
|
276 |
+
def order_regions_lines(self, lines, regions):
|
277 |
+
"""Function for ordering line predictions inside each region."""
|
278 |
+
regions_with_rows = []
|
279 |
+
region_max_mins = []
|
280 |
+
for i, region in enumerate(regions):
|
281 |
+
line_max_mins = []
|
282 |
+
line_confs = []
|
283 |
+
line_polygons = []
|
284 |
+
for line in lines:
|
285 |
+
if line['reg_id'] == region['id']:
|
286 |
+
line_max_mins.append(line['max_min'])
|
287 |
+
line_confs.append(line['conf'])
|
288 |
+
line_polygons.append(line['polygon'])
|
289 |
+
if line_polygons:
|
290 |
+
# If one or more lines are connected to a region, line order inside the region is defined
|
291 |
+
# and the predicted text lines are joined in the same python dict
|
292 |
+
line_order = self.order_poly.order(line_max_mins)
|
293 |
+
line_polygons = [line_polygons[i] for i in line_order]
|
294 |
+
line_confs = [line_confs[i] for i in line_order]
|
295 |
+
new_region = {'region_coords': region['coords'],
|
296 |
+
'region_name': region['name'],
|
297 |
+
'lines': line_polygons,
|
298 |
+
'line_confs': line_confs,
|
299 |
+
'region_conf': region['conf'],
|
300 |
+
'img_shape': region['img_shape']}
|
301 |
+
region_max_mins.append(region['max_min'])
|
302 |
+
regions_with_rows.append(new_region)
|
303 |
+
else:
|
304 |
+
continue
|
305 |
+
# Creates an ordering of the detected regions based on their polygon coordinates
|
306 |
+
if self.order_regions:
|
307 |
+
region_order = self.order_poly.order(region_max_mins)
|
308 |
+
regions_with_rows = [regions_with_rows[i] for i in region_order]
|
309 |
+
|
310 |
+
return regions_with_rows
|
311 |
+
|
312 |
+
def get_default_region(self, image):
|
313 |
+
"""Function for creating a default region if no regions are detected."""
|
314 |
+
w, h = image.size
|
315 |
+
region = {'coords': [[0.0, 0.0], [w, 0.0], [w, h], [0.0, h]],
|
316 |
+
'max_min': [w, 0.0, h, 0.0],
|
317 |
+
'class': '0',
|
318 |
+
'name': "paragraph",
|
319 |
+
'conf': 0.0,
|
320 |
+
'id': '0',
|
321 |
+
'img_shape': (h, w)}
|
322 |
+
return [region]
|
323 |
+
|
324 |
+
def get_segmentation(self, image):
|
325 |
+
"""Segment input image into ordered text lines or ordered text regions and text lines."""
|
326 |
+
line_preds = self.get_line_preds(image)
|
327 |
+
if line_preds:
|
328 |
+
# If region detection model is defined, text regions and text lines are detected
|
329 |
+
region_preds = self.get_region_preds(image)
|
330 |
+
if not region_preds:
|
331 |
+
region_preds = self.get_default_region(image)
|
332 |
+
print(f'No regions detected from image {image}')
|
333 |
+
lines_with_regions = self.get_line_regions(line_preds, region_preds)
|
334 |
+
ordered_regions = self.order_regions_lines(lines_with_regions, region_preds)
|
335 |
+
return ordered_regions
|
336 |
+
else:
|
337 |
+
print(f'No text lines detected from image {image}')
|
338 |
+
return None
|
339 |
+
|
340 |
+
|