Spaces:
Runtime error
Runtime error
File size: 4,391 Bytes
72db49b 76daa54 72db49b 76daa54 72db49b 76daa54 72db49b 76daa54 72db49b 76daa54 72db49b 76daa54 72db49b 76daa54 72db49b 76daa54 72db49b 76daa54 72db49b 76daa54 dc35a25 72db49b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import gradio as gr
import numpy as np
import torch
from torchvision.transforms import Compose
import cv2
from dpt.models import DPTDepthModel, DPTSegmentationModel
from dpt.transforms import Resize, NormalizeImage, PrepareForNet
import os
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("device: %s" % device)
default_models = {
"dpt_hybrid": "weights/dpt_hybrid-midas-501f0c75.pt",
"segment_hybrid": "weights/dpt_hybrid-ade20k-53898607.pt"
}
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
depth_model = DPTDepthModel(
path=default_models["dpt_hybrid"],
backbone="vitb_rn50_384",
non_negative=True,
enable_attention_hooks=False,
)
depth_model.eval()
depth_model.to(device)
seg_model = DPTSegmentationModel(
150,
path=default_models["segment_hybrid"],
backbone="vitb_rn50_384",
)
seg_model.eval()
seg_model.to(device)
# Transform
net_w = net_h = 384
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
transform = Compose(
[
Resize(
net_w,
net_h,
resize_target=None,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method="minimal",
image_interpolation_method=cv2.INTER_CUBIC,
),
normalization,
PrepareForNet(),
]
)
def write_depth(depth, bits=1, absolute_depth=False):
"""Write depth map to pfm and png file.
Args:
path (str): filepath without extension
depth (array): depth
"""
# write_pfm(path + ".pfm", depth.astype(np.float32))
if absolute_depth:
out = depth
else:
depth_min = depth.min()
depth_max = depth.max()
max_val = (2 ** (8 * bits)) - 1
if depth_max - depth_min > np.finfo("float").eps:
out = max_val * (depth - depth_min) / (depth_max - depth_min)
else:
out = np.zeros(depth.shape, dtype=depth.dtype)
if bits == 1:
return out.astype("uint8")
elif bits == 2:
return out.astype("uint16")
def DPT(image):
img_input = transform({"image": image})["image"]
# compute
with torch.no_grad():
sample = torch.from_numpy(img_input).to(device).unsqueeze(0)
prediction = depth_model.forward(sample)
prediction = (
torch.nn.functional.interpolate(
prediction.unsqueeze(1),
size=image.shape[:2],
mode="bicubic",
align_corners=False,
)
.squeeze()
.cpu()
.numpy()
)
depth_img = write_depth(prediction, bits=2)
return depth_img
def Segment(image):
img_input = transform({"image": image})["image"]
# compute
with torch.no_grad():
sample = torch.from_numpy(img_input).to(device).unsqueeze(0)
# if optimize == True and device == torch.device("cuda"):
# sample = sample.to(memory_format=torch.channels_last)
# sample = sample.half()
out = seg_model.forward(sample)
prediction = torch.nn.functional.interpolate(
out, size=image.shape[:2], mode="bicubic", align_corners=False
)
prediction = torch.argmax(prediction, dim=1) + 1
prediction = prediction.squeeze().cpu().numpy()
return prediction
title = " AISeed AI Application Demo "
description = "# A Demo of Deep Learning for Depth Estimation"
example_list = [["examples/" + example] for example in os.listdir("examples")]
with gr.Blocks() as demo:
demo.title = title
gr.Markdown(description)
with gr.Row():
with gr.Column():
im_2 = gr.Image(label="Depth Image")
im_3 = gr.Image(label="Segment Image")
with gr.Column():
im = gr.Image(label="Input Image")
btn1 = gr.Button(value="Depth Estimator")
btn1.click(DPT, inputs=[im], outputs=[im_2])
btn2 = gr.Button(value="Segment")
btn2.click(Segment, inputs=[im], outputs=[im_3])
gr.Examples(examples=example_list,
inputs=[im],
outputs=[im_2])
if __name__ == "__main__":
demo.launch() |