import cv2 import numpy as np import torch def calculate_psnr(img1, img2, crop_border, input_order='HWC', test_y_channel=False): """Calculate PSNR (Peak Signal-to-Noise Ratio). Ref: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio Args: img1 (ndarray): Images with range [0, 255]. img2 (ndarray): Images with range [0, 255]. crop_border (int): Cropped pixels in each edge of an image. These pixels are not involved in the PSNR calculation. input_order (str): Whether the input order is 'HWC' or 'CHW'. Default: 'HWC'. test_y_channel (bool): Test on Y channel of YCbCr. Default: False. Returns: float: psnr result. """ assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.') if input_order not in ['HWC', 'CHW']: raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"') img1 = reorder_image(img1, input_order=input_order) img2 = reorder_image(img2, input_order=input_order) img1 = img1.astype(np.float64) img2 = img2.astype(np.float64) if crop_border != 0: img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...] img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...] if test_y_channel: img1 = to_y_channel(img1) img2 = to_y_channel(img2) mse = np.mean((img1 - img2) ** 2) if mse == 0: return float('inf') return 20. * np.log10(255. / np.sqrt(mse)) def _ssim(img1, img2): """Calculate SSIM (structural similarity) for one channel images. It is called by func:`calculate_ssim`. Args: img1 (ndarray): Images with range [0, 255] with order 'HWC'. img2 (ndarray): Images with range [0, 255] with order 'HWC'. Returns: float: ssim result. """ C1 = (0.01 * 255) ** 2 C2 = (0.03 * 255) ** 2 img1 = img1.astype(np.float64) img2 = img2.astype(np.float64) kernel = cv2.getGaussianKernel(11, 1.5) window = np.outer(kernel, kernel.transpose()) mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] mu1_sq = mu1 ** 2 mu2_sq = mu2 ** 2 mu1_mu2 = mu1 * mu2 sigma1_sq = cv2.filter2D(img1 ** 2, -1, window)[5:-5, 5:-5] - mu1_sq sigma2_sq = cv2.filter2D(img2 ** 2, -1, window)[5:-5, 5:-5] - mu2_sq sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) return ssim_map.mean() def calculate_ssim(img1, img2, crop_border, input_order='HWC', test_y_channel=False): """Calculate SSIM (structural similarity). Ref: Image quality assessment: From error visibility to structural similarity The results are the same as that of the official released MATLAB code in https://ece.uwaterloo.ca/~z70wang/research/ssim/. For three-channel images, SSIM is calculated for each channel and then averaged. Args: img1 (ndarray): Images with range [0, 255]. img2 (ndarray): Images with range [0, 255]. crop_border (int): Cropped pixels in each edge of an image. These pixels are not involved in the SSIM calculation. input_order (str): Whether the input order is 'HWC' or 'CHW'. Default: 'HWC'. test_y_channel (bool): Test on Y channel of YCbCr. Default: False. Returns: float: ssim result. """ assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.') if input_order not in ['HWC', 'CHW']: raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"') img1 = reorder_image(img1, input_order=input_order) img2 = reorder_image(img2, input_order=input_order) img1 = img1.astype(np.float64) img2 = img2.astype(np.float64) if crop_border != 0: img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...] img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...] if test_y_channel: img1 = to_y_channel(img1) img2 = to_y_channel(img2) ssims = [] for i in range(img1.shape[2]): ssims.append(_ssim(img1[..., i], img2[..., i])) return np.array(ssims).mean() def _blocking_effect_factor(im): block_size = 8 block_horizontal_positions = torch.arange(7, im.shape[3] - 1, 8) block_vertical_positions = torch.arange(7, im.shape[2] - 1, 8) horizontal_block_difference = ( (im[:, :, :, block_horizontal_positions] - im[:, :, :, block_horizontal_positions + 1]) ** 2).sum( 3).sum(2).sum(1) vertical_block_difference = ( (im[:, :, block_vertical_positions, :] - im[:, :, block_vertical_positions + 1, :]) ** 2).sum(3).sum( 2).sum(1) nonblock_horizontal_positions = np.setdiff1d(torch.arange(0, im.shape[3] - 1), block_horizontal_positions) nonblock_vertical_positions = np.setdiff1d(torch.arange(0, im.shape[2] - 1), block_vertical_positions) horizontal_nonblock_difference = ( (im[:, :, :, nonblock_horizontal_positions] - im[:, :, :, nonblock_horizontal_positions + 1]) ** 2).sum( 3).sum(2).sum(1) vertical_nonblock_difference = ( (im[:, :, nonblock_vertical_positions, :] - im[:, :, nonblock_vertical_positions + 1, :]) ** 2).sum( 3).sum(2).sum(1) n_boundary_horiz = im.shape[2] * (im.shape[3] // block_size - 1) n_boundary_vert = im.shape[3] * (im.shape[2] // block_size - 1) boundary_difference = (horizontal_block_difference + vertical_block_difference) / ( n_boundary_horiz + n_boundary_vert) n_nonboundary_horiz = im.shape[2] * (im.shape[3] - 1) - n_boundary_horiz n_nonboundary_vert = im.shape[3] * (im.shape[2] - 1) - n_boundary_vert nonboundary_difference = (horizontal_nonblock_difference + vertical_nonblock_difference) / ( n_nonboundary_horiz + n_nonboundary_vert) scaler = np.log2(block_size) / np.log2(min([im.shape[2], im.shape[3]])) bef = scaler * (boundary_difference - nonboundary_difference) bef[boundary_difference <= nonboundary_difference] = 0 return bef def calculate_psnrb(img1, img2, crop_border, input_order='HWC', test_y_channel=False): """Calculate PSNR-B (Peak Signal-to-Noise Ratio). Ref: Quality assessment of deblocked images, for JPEG image deblocking evaluation # https://gitlab.com/Queuecumber/quantization-guided-ac/-/blob/master/metrics/psnrb.py Args: img1 (ndarray): Images with range [0, 255]. img2 (ndarray): Images with range [0, 255]. crop_border (int): Cropped pixels in each edge of an image. These pixels are not involved in the PSNR calculation. input_order (str): Whether the input order is 'HWC' or 'CHW'. Default: 'HWC'. test_y_channel (bool): Test on Y channel of YCbCr. Default: False. Returns: float: psnr result. """ assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.') if input_order not in ['HWC', 'CHW']: raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"') img1 = reorder_image(img1, input_order=input_order) img2 = reorder_image(img2, input_order=input_order) img1 = img1.astype(np.float64) img2 = img2.astype(np.float64) if crop_border != 0: img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...] img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...] if test_y_channel: img1 = to_y_channel(img1) img2 = to_y_channel(img2) # follow https://gitlab.com/Queuecumber/quantization-guided-ac/-/blob/master/metrics/psnrb.py img1 = torch.from_numpy(img1).permute(2, 0, 1).unsqueeze(0) / 255. img2 = torch.from_numpy(img2).permute(2, 0, 1).unsqueeze(0) / 255. total = 0 for c in range(img1.shape[1]): mse = torch.nn.functional.mse_loss(img1[:, c:c + 1, :, :], img2[:, c:c + 1, :, :], reduction='none') bef = _blocking_effect_factor(img1[:, c:c + 1, :, :]) mse = mse.view(mse.shape[0], -1).mean(1) total += 10 * torch.log10(1 / (mse + bef)) return float(total) / img1.shape[1] def reorder_image(img, input_order='HWC'): """Reorder images to 'HWC' order. If the input_order is (h, w), return (h, w, 1); If the input_order is (c, h, w), return (h, w, c); If the input_order is (h, w, c), return as it is. Args: img (ndarray): Input image. input_order (str): Whether the input order is 'HWC' or 'CHW'. If the input image shape is (h, w), input_order will not have effects. Default: 'HWC'. Returns: ndarray: reordered image. """ if input_order not in ['HWC', 'CHW']: raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' "'HWC' and 'CHW'") if len(img.shape) == 2: img = img[..., None] if input_order == 'CHW': img = img.transpose(1, 2, 0) return img def to_y_channel(img): """Change to Y channel of YCbCr. Args: img (ndarray): Images with range [0, 255]. Returns: (ndarray): Images with range [0, 255] (float type) without round. """ img = img.astype(np.float32) / 255. if img.ndim == 3 and img.shape[2] == 3: img = bgr2ycbcr(img, y_only=True) img = img[..., None] return img * 255. def _convert_input_type_range(img): """Convert the type and range of the input image. It converts the input image to np.float32 type and range of [0, 1]. It is mainly used for pre-processing the input image in colorspace convertion functions such as rgb2ycbcr and ycbcr2rgb. Args: img (ndarray): The input image. It accepts: 1. np.uint8 type with range [0, 255]; 2. np.float32 type with range [0, 1]. Returns: (ndarray): The converted image with type of np.float32 and range of [0, 1]. """ img_type = img.dtype img = img.astype(np.float32) if img_type == np.float32: pass elif img_type == np.uint8: img /= 255. else: raise TypeError('The img type should be np.float32 or np.uint8, ' f'but got {img_type}') return img def _convert_output_type_range(img, dst_type): """Convert the type and range of the image according to dst_type. It converts the image to desired type and range. If `dst_type` is np.uint8, images will be converted to np.uint8 type with range [0, 255]. If `dst_type` is np.float32, it converts the image to np.float32 type with range [0, 1]. It is mainly used for post-processing images in colorspace convertion functions such as rgb2ycbcr and ycbcr2rgb. Args: img (ndarray): The image to be converted with np.float32 type and range [0, 255]. dst_type (np.uint8 | np.float32): If dst_type is np.uint8, it converts the image to np.uint8 type with range [0, 255]. If dst_type is np.float32, it converts the image to np.float32 type with range [0, 1]. Returns: (ndarray): The converted image with desired type and range. """ if dst_type not in (np.uint8, np.float32): raise TypeError('The dst_type should be np.float32 or np.uint8, ' f'but got {dst_type}') if dst_type == np.uint8: img = img.round() else: img /= 255. return img.astype(dst_type) def bgr2ycbcr(img, y_only=False): """Convert a BGR image to YCbCr image. The bgr version of rgb2ycbcr. It implements the ITU-R BT.601 conversion for standard-definition television. See more details in https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion. It differs from a similar function in cv2.cvtColor: `BGR <-> YCrCb`. In OpenCV, it implements a JPEG conversion. See more details in https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion. Args: img (ndarray): The input image. It accepts: 1. np.uint8 type with range [0, 255]; 2. np.float32 type with range [0, 1]. y_only (bool): Whether to only return Y channel. Default: False. Returns: ndarray: The converted YCbCr image. The output image has the same type and range as input image. """ img_type = img.dtype img = _convert_input_type_range(img) if y_only: out_img = np.dot(img, [24.966, 128.553, 65.481]) + 16.0 else: out_img = np.matmul( img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) + [16, 128, 128] out_img = _convert_output_type_range(out_img, img_type) return out_img