import torch from torch.nn import Conv2d, Sequential, ModuleList, ReLU from ..nn.mobilenet import MobileNetV1 from .ssd import SSD from .predictor import Predictor from .config import mobilenetv1_ssd_config as config def create_mobilenetv1_ssd(num_classes, is_test=False): base_net = MobileNetV1(1001).model # disable dropout layer source_layer_indexes = [ 12, 14, ] extras = ModuleList([ Sequential( Conv2d(in_channels=1024, out_channels=256, kernel_size=1), ReLU(), Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=2, padding=1), ReLU() ), Sequential( Conv2d(in_channels=512, out_channels=128, kernel_size=1), ReLU(), Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1), ReLU() ), Sequential( Conv2d(in_channels=256, out_channels=128, kernel_size=1), ReLU(), Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1), ReLU() ), Sequential( Conv2d(in_channels=256, out_channels=128, kernel_size=1), ReLU(), Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1), ReLU() ) ]) regression_headers = ModuleList([ Conv2d(in_channels=512, out_channels=6 * 4, kernel_size=3, padding=1), Conv2d(in_channels=1024, out_channels=6 * 4, kernel_size=3, padding=1), Conv2d(in_channels=512, out_channels=6 * 4, kernel_size=3, padding=1), Conv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1), Conv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1), Conv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1), # TODO: change to kernel_size=1, padding=0? ]) classification_headers = ModuleList([ Conv2d(in_channels=512, out_channels=6 * num_classes, kernel_size=3, padding=1), Conv2d(in_channels=1024, out_channels=6 * num_classes, kernel_size=3, padding=1), Conv2d(in_channels=512, out_channels=6 * num_classes, kernel_size=3, padding=1), Conv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1), Conv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1), Conv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1), # TODO: change to kernel_size=1, padding=0? ]) return SSD(num_classes, base_net, source_layer_indexes, extras, classification_headers, regression_headers, is_test=is_test, config=config) def create_mobilenetv1_ssd_predictor(net, candidate_size=200, nms_method=None, sigma=0.5, device=None): predictor = Predictor(net, config.image_size, config.image_mean, config.image_std, nms_method=nms_method, iou_threshold=config.iou_threshold, candidate_size=candidate_size, sigma=sigma, device=device) return predictor