KarmaCST commited on
Commit
de885ed
·
verified ·
1 Parent(s): 3c8d77f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -64
app.py CHANGED
@@ -43,67 +43,3 @@ interface = gr.Interface(
43
  article="<h1>Created By:</h1>Mr. Karma Wangchuk<br>Lecturer<br>Information Technology Department<br>College of Science and Technology<br>Rinchending Phuentsholing<br>Chhukha Bhutan<br>",
44
  )
45
  interface.launch(debug=True)
46
- # import torch
47
- # import re
48
- # import gradio as gr
49
- # from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel, AutoModelForSeq2SeqLM, pipeline
50
- # from transformers import ViTImageProcessor
51
-
52
- # device='cpu'
53
- # encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
54
- # decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
55
- # model_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
56
-
57
- # # feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
58
-
59
- # feature_extractor = ViTImageProcessor.from_pretrained(encoder_checkpoint)
60
- # tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
61
- # model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device)
62
-
63
- # mod = AutoModelForSeq2SeqLM.from_pretrained("KarmaCST/nllb-200-distilled-600M-en-to-dz")
64
- # tok = AutoTokenizer.from_pretrained("KarmaCST/nllb-200-distilled-600M-en-to-dz")
65
-
66
-
67
- # src_lang = 'eng_Latn'
68
- # tgt_lang = "dzo_Tibt"
69
-
70
-
71
- # def predict(image,max_length=64, num_beams=4):
72
- # image = image.convert('RGB')
73
- # image = feature_extractor(image, return_tensors="pt").pixel_values.to(device)
74
- # clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0]
75
- # # caption_ids = model.generate(image, max_length = max_length)[0]
76
- # caption_ids = model.generate(image, max_length = max_length, clean_up_tokenization_spaces=False)[0]
77
- # caption_text = clean_text(tokenizer.decode(caption_ids))
78
-
79
- # translation_pipeline = pipeline("translation",
80
- # model=mod,
81
- # tokenizer=tok,
82
- # src_lang=src_lang,
83
- # tgt_lang=tgt_lang)
84
-
85
- # result = translation_pipeline(caption_text)
86
- # return result[0]['translation_text']
87
-
88
-
89
- # # input = gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True)
90
- # # output = gr.outputs.Textbox(type="auto",label="Captions")
91
-
92
- # # input = gr.Image(label="Upload any Image", type = 'pil', optional=True)
93
- # input = gr.Image(label="Upload any Image", type = 'pil')
94
- # output = gr.Textbox(type="auto",label="Captions")
95
-
96
- # examples = [f"example{i}.jpg" for i in range(1,7)]
97
-
98
- # title = "Image Captioning in Dzongkha "
99
-
100
- # interface = gr.Interface(
101
- # fn=predict,
102
- # inputs = input,
103
- # theme="grass",
104
- # outputs=output,
105
- # examples = examples,
106
- # title=title,
107
- # article="<h1>Created By:</h1>Mr. Karma Wangchuk<br>Lecturer<br>Information Technology Department<br>College of Science and Technology<br>Rinchending Phuentsholing<br>Chhukha Bhutan<br>",
108
- # )
109
- # interface.launch(debug=True)
 
43
  article="<h1>Created By:</h1>Mr. Karma Wangchuk<br>Lecturer<br>Information Technology Department<br>College of Science and Technology<br>Rinchending Phuentsholing<br>Chhukha Bhutan<br>",
44
  )
45
  interface.launch(debug=True)