import streamlit as st from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC import torch import numpy as np import soundfile as sf import io st.title("Syllables per Second Calculator") st.write("Upload an audio file to calculate the number of 'p', 't', and 'k' syllables per second.") def get_syllables_per_second(audio_file): processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft") audio_input, sample_rate = sf.read(io.BytesIO(audio_file.read())) if audio_input.ndim > 1 and audio_input.shape[1] == 2: audio_input = np.mean(audio_input, axis=1) input_values = processor(audio_input, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids, output_char_offsets=True) offsets = transcription['char_offsets'] # Find the start and end time offsets of the syllables syllable_offsets = [item for item in offsets[0] if item['char'] in ['p', 't', 'k']] if syllable_offsets: # if any syllable is found first_syllable_offset = syllable_offsets[0]['start_offset'] / sample_rate last_syllable_offset = syllable_offsets[-1]['end_offset'] / sample_rate # Duration from the first to the last syllable syllable_duration = last_syllable_offset - first_syllable_offset else: syllable_duration = 0 syllable_count = len(syllable_offsets) syllables_per_second = syllable_count / syllable_duration if syllable_duration > 0 else 0 return syllables_per_second uploaded_file = st.file_uploader("Choose an audio file", type=["wav"]) if uploaded_file is not None: with st.spinner("Processing the audio file..."): result = get_syllables_per_second(uploaded_file) st.write("Syllables per second: ", result)