import os from datetime import datetime, timedelta from typing import Dict, List import pandas as pd import tweepy import praw import googleapiclient.discovery import pytumblr from gnews import GNews import requests from bs4 import BeautifulSoup import time import math class DataFetch: def __init__(self): # Load company list and set date range self.end_date = datetime.now() self.start_date = self.end_date - timedelta(days=1) # Initialize API clients self.tumblr_client = pytumblr.TumblrRestClient( os.getenv("TUMBLR_CONSUMER_KEY"), os.getenv("TUMBLR_CONSUMER_SECRET"), os.getenv("TUMBLR_OAUTH_TOKEN"), os.getenv("TUMBLR_OAUTH_SECRET") ) twitter_auth = tweepy.OAuthHandler(os.getenv("TWITTER_API_KEY"), os.getenv("TWITTER_API_SECRET")) twitter_auth.set_access_token(os.getenv("TWITTER_ACCESS_TOKEN"), os.getenv("TWITTER_ACCESS_TOKEN_SECRET")) self.twitter_api = tweepy.API(twitter_auth) self.reddit = praw.Reddit( client_id=os.getenv("REDDIT_CLIENT_ID"), client_secret=os.getenv("REDDIT_CLIENT_SECRET"), user_agent="Sentiment Analysis Bot 1.0" ) self.youtube = googleapiclient.discovery.build("youtube", "v3", developerKey=os.getenv("YOUTUBE_API_KEY")) def load_company_list(self, file_path: str) -> List[str]: self.company_list = pd.read_csv(file_path)['company_ticker'].tolist() def collect_data(self) -> List[Dict]: all_data = [] for company in self.company_list: print(f"{company}:") all_data.extend(self._collect_social_media_data(company)) all_data.extend(self._collect_news_data(company)) return all_data def _collect_social_media_data(self, query: str) -> List[Dict]: social_data = [] print("Collecting Reddit Data") social_data.extend(self.collect_reddit_data(query)) print("Collecting YouTube Data") social_data.extend(self.collect_youtube_data(query)) print("Collecting Tumblr Data") social_data.extend(self.collect_tumblr_data(query)) return social_data def _collect_news_data(self, query: str) -> List[Dict]: news_data = [] print("Collecting Google News Data") news_data.extend(self.collect_google_news(query)) print("Collecting Financial Times Data") news_data.extend(self.collect_financial_times(query)) print("Collecting Bloomberg Data") news_data.extend(self.collect_bloomberg(query)) print("Collecting Reuters Data") news_data.extend(self.collect_reuters(query)) print("Collecting WSJ Data") # news_data.extend(self.collect_wsj(query)) print("Collecting Serper Data - StockNews, Yahoo Finance, Insider Monkey, Investor's Business Daily, etc.") news_data.extend(self.search_news(query)) return news_data def collect_tumblr_data(self, query: str) -> List[Dict]: posts = self.tumblr_client.tagged(query) return [{"platform": "Tumblr", "company": query, "page_content": { "title": post["blog"]["title"], "content": post["blog"]["description"]}} for post in posts] def collect_twitter_data(self, query: str) -> List[Dict]: tweets = [] for tweet in tweepy.Cursor(self.twitter_api.search_tweets, q=query, lang="en", since=self.start_date, until=self.end_date).items(100): tweets.append(tweet._json) return [{"platform": "Twitter", "company": query, "page_content": tweet} for tweet in tweets] def collect_reddit_data(self, query: str) -> List[Dict]: posts = [] subreddit = self.reddit.subreddit("all") for post in subreddit.search(query, sort="new", time_filter="day"): post_date = datetime.fromtimestamp(post.created_utc) if self.start_date <= post_date <= self.end_date: posts.append({"platform": "Reddit", "company": query, "page_content": { "title": post.title, "content": post.selftext}}) return posts def collect_youtube_data(self, query: str) -> List[Dict]: request = self.youtube.search().list( q=query, type="video", part="id,snippet", maxResults=50, publishedAfter=self.start_date.isoformat() + "Z", publishedBefore=self.end_date.isoformat() + "Z" ) response = request.execute() return [{"platform": "YouTube", "company": query, "page_content": { "title": item["snippet"]["title"], "content": item["snippet"]["description"]}} for item in response['items']] def collect_google_news(self, query: str) -> List[Dict]: google_news = GNews(language='en', country='US', start_date=self.start_date, end_date=self.end_date) articles = google_news.get_news(query) return [{"platform": "Google News", "company": query, "page_content": { "title": article["title"], "content": article["description"]}} for article in articles] def collect_financial_times(self, query: str) -> List[Dict]: url = f"https://www.ft.com/search?q={query}&dateTo={self.end_date.strftime('%Y-%m-%d')}&dateFrom={self.start_date.strftime('%Y-%m-%d')}" response = requests.get(url) soup = BeautifulSoup(response.content, 'html.parser') articles = soup.find_all('div', class_='o-teaser__content') return [{"platform": "Financial Times", "company": query, "page_content": { "title": a.find('div', class_='o-teaser__heading').text.strip(), "content": a.find('p', class_='o-teaser__standfirst').text.strip() if a.find('p', class_='o-teaser__standfirst') else '' }} for a in articles] def collect_bloomberg(self, query: str) -> List[Dict]: url = f"https://www.bloomberg.com/search?query={query}" response = requests.get(url) soup = BeautifulSoup(response.content, 'html.parser') articles = soup.find_all('div', class_='storyItem__aaf871c1') return [{"platform": "Bloomberg", "company": query, "page_content": { "title": a.find('a', class_='headline__3a97424d').text.strip(), "content": a.find('p', class_='summary__483358e1').text.strip() if a.find('p', class_='summary__483358e1') else '' }} for a in articles] def collect_reuters(self, query: str) -> List[Dict]: articles = [] base_url = "https://www.reuters.com/site-search/" page = 1 while True: url = f"{base_url}?blob={query}&page={page}" response = requests.get(url) soup = BeautifulSoup(response.content, 'html.parser') results = soup.find_all('li', class_='search-result__item') if not results: break for result in results: date_elem = result.find('time', class_='search-result__timestamp') if date_elem: date = datetime.strptime(date_elem['datetime'], "%Y-%m-%dT%H:%M:%SZ") if self.start_date <= date <= self.end_date: articles.append({"platform": "Reuters", "company": query, "page_content": { "title": result.find('h3', class_='search-result__headline').text.strip(), "content": result.find('p', class_='search-result__excerpt').text.strip() }}) elif date < self.start_date: return articles page += 1 time.sleep(1) return articles def collect_wsj(self, query: str) -> List[Dict]: articles = [] base_url = "https://www.wsj.com/search" page = 1 while True: params = { 'query': query, 'isToggleOn': 'true', 'operator': 'AND', 'sort': 'date-desc', 'duration': 'custom', 'startDate': self.start_date.strftime('%Y/%m/%d'), 'endDate': self.end_date.strftime('%Y/%m/%d'), 'page': page } response = requests.get(base_url, params=params) soup = BeautifulSoup(response.content, 'html.parser') results = soup.find_all('article', class_='WSJTheme--story--XB4V2mLz') if not results: break for result in results: date_elem = result.find('p', class_='WSJTheme--timestamp--22sfkNDv') if date_elem: date = datetime.strptime(date_elem.text.strip(), "%B %d, %Y") if self.start_date <= date <= self.end_date: articles.append({"platform": "Wall Street Journal", "company": query, "page_content": { "title": result.find('h3', class_='WSJTheme--headline--unZqjb45').text.strip(), "content": result.find('p', class_='WSJTheme--summary--lmOXEsbN').text.strip() }}) elif date < self.start_date: return articles page += 1 time.sleep(1) return articles def search_news(self, query: str,cnt=300) -> List[Dict]: articles = [] num_results = cnt headers = { "X-API-KEY": os.getenv("SERP_API_KEY"), "Content-Type": "application/json" } payload = {"q": f"{query} company news", "num": num_results, "dateRestrict": 14 } response = requests.post( "https://google.serper.dev/news", headers=headers, json=payload ) # print(response) if response.status_code == 200: results = response.json().get("news", []) for result in results: articles.append({"platform": result["source"], "company": query, "page_content": { "title": result["title"], "content": result["snippet"], "link": result["link"] }}) return articles # Usage Example if __name__ == "__main__": analyzer = DataFetch("company_list.csv") data = analyzer.collect_data() # Here, data would contain all collected sentiment data for the given companies