Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
import tensorflow as tf
|
4 |
+
import numpy as np
|
5 |
+
data=pd.read_csv('train.csv')
|
6 |
+
data.head(5)
|
7 |
+
|
8 |
+
from tensorflow.keras.layers import TextVectorization
|
9 |
+
|
10 |
+
x=data['comment_text']
|
11 |
+
y=data[data.columns[2:]].values
|
12 |
+
|
13 |
+
max_features=200000
|
14 |
+
vectorizer=TextVectorization(max_tokens=max_features,
|
15 |
+
output_sequence_length=1800,
|
16 |
+
output_mode='int')
|
17 |
+
vectorizer.get_vocabulary()
|
18 |
+
vectorizer.adapt(x.values)
|
19 |
+
vectorizer("have you watched breaking bad")[:5]
|
20 |
+
vectorized_text=vectorizer(x.values)
|
21 |
+
dataset=tf.data.Dataset.from_tensor_slices((vectorized_text, y))
|
22 |
+
dataset=dataset.cache()
|
23 |
+
dataset=dataset.shuffle(160000)
|
24 |
+
dataset=dataset.batch(16)
|
25 |
+
dataset=dataset.prefetch(8)
|
26 |
+
|
27 |
+
batch_x, batch_y = dataset.as_numpy_iterator().next()
|
28 |
+
|
29 |
+
train=dataset.take(int(len(dataset)*.7))
|
30 |
+
val=dataset.skip(int(len(dataset)*.7)).take(int(len(dataset)*.2))
|
31 |
+
test=dataset.skip(int(len(dataset)*.9)).take(int(len(dataset)*.1))
|
32 |
+
|
33 |
+
train_generator=train.as_numpy_iterator()
|
34 |
+
train_generator.next()
|
35 |
+
|
36 |
+
from tensorflow.keras.models import Sequential
|
37 |
+
from tensorflow.keras.layers import LSTM, Dropout, Bidirectional, Dense, Embedding
|
38 |
+
|
39 |
+
model=Sequential()
|
40 |
+
model.add(Embedding(max_features+1, 32))
|
41 |
+
model.add(Bidirectional(LSTM(32, activation='tanh')))
|
42 |
+
model.add(Dense(128, activation='relu'))
|
43 |
+
model.add(Dense(256, activation='relu'))
|
44 |
+
model.add(Dense(128, activation='relu'))
|
45 |
+
model.add(Dense(6, activation='sigmoid'))
|
46 |
+
model.compile(loss='BinaryCrossentropy', optimizer='adam', metrics=['accuracy'])
|
47 |
+
|
48 |
+
model.summary()
|
49 |
+
|
50 |
+
history=model.fit(train, epochs=10, validation_data=val)
|
51 |
+
|
52 |
+
model.evaluate(test)
|
53 |
+
|
54 |
+
x_batch, y_batch = test.as_numpy_iterator().next()
|
55 |
+
(model.predict(x_batch) > 0.5).astype(int)
|
56 |
+
input_text=vectorizer('I am coming to kill you pal')
|
57 |
+
|
58 |
+
input_text[:7]
|
59 |
+
batch=test.as_numpy_iterator().next()
|
60 |
+
res=model.predict(np.expand_dims(input_text,0))
|
61 |
+
res
|
62 |
+
model.save('finalprojecttoxic.h5')
|
63 |
+
|
64 |
+
from transformers import pipeline
|
65 |
+
|
66 |
+
import gradio as gr
|
67 |
+
|
68 |
+
model=tf.keras.models.load_model('finalprojecttoxic.h5')
|
69 |
+
input_str=vectorizer('Hey i freaking hate you!. I\'m going to hurt you!')
|
70 |
+
res=model.predict(np.expand_dims(input_str,0))
|
71 |
+
|
72 |
+
|
73 |
+
translator_hindi = pipeline("translation", model="Helsinki-NLP/opus-mt-hi-en", tokenizer="Helsinki-NLP/opus-mt-hi-en")
|
74 |
+
hindi_text = "नमस्ते, आप कैसे हैं?"
|
75 |
+
en_to_hin = translator_hindi(hindi_text)
|
76 |
+
en_to_hin[0]['translation_text']
|
77 |
+
|
78 |
+
def translate_hindi(from_text):
|
79 |
+
result2 = translator_hindi(from_text)
|
80 |
+
|
81 |
+
return result2[0]['translation_text']
|
82 |
+
|
83 |
+
|
84 |
+
translate_hindi('नमस्ते, आप कैसे हैं?')
|
85 |
+
|
86 |
+
def score_comment(comment):
|
87 |
+
vectorized_comment = vectorizer([comment])
|
88 |
+
results=model.predict(vectorized_comment)
|
89 |
+
|
90 |
+
text=''
|
91 |
+
for idx, col in enumerate(data.columns[2:]):
|
92 |
+
text+= '{}: {}\n'.format(col, results[0][idx]>0.5)
|
93 |
+
|
94 |
+
return text
|
95 |
+
|
96 |
+
def combined_models(input):
|
97 |
+
output1=translate_hindi(input)
|
98 |
+
output2=score_comment(input)
|
99 |
+
|
100 |
+
return output1, output2
|
101 |
+
|
102 |
+
interface = gr.Interface(fn=combined_models, inputs="text", outputs=["text","text"],title="Toxic Comment Analyzer")
|
103 |
+
|
104 |
+
interface.launch(share=True)
|
105 |
+
|