Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline | |
import tensorflow as tf | |
import pandas as pd | |
from tensorflow.keras.layers import TextVectorization | |
# Load your data | |
new_data = pd.read_csv('train.csv') # Make sure to adjust the path if necessary | |
x = new_data['comment_text'] | |
y = new_data[new_data.columns[2:]].values | |
max_features = 160000 | |
vectorizer = TextVectorization(max_tokens=max_features, | |
output_sequence_length=1800, | |
output_mode='int') | |
vectorizer.get_vocabulary() | |
vectorizer.adapt(x.values) | |
model = tf.keras.models.load_model('finalprojecttoxic.h5') | |
translator_hindi = pipeline("translation", model="Helsinki-NLP/opus-mt-hi-en", tokenizer="Helsinki-NLP/opus-mt-hi-en") | |
def translate_hindi(from_text): | |
result2 = translator_hindi(from_text) | |
return result2[0]['translation_text'] | |
def score_comment(comment): | |
vectorized_comment = vectorizer([comment]) | |
results = model.predict(vectorized_comment) | |
text = '' | |
for idx, col in enumerate(new_data.columns[2:]): | |
text += '{}: {}\n'.format(col, results[0][idx] > 0.5) | |
return text | |
def combined_models(input): | |
translated_text = translate_hindi(input) | |
toxic_score = score_comment(input) | |
return translated_text, toxic_score | |
interface = gr.Interface(fn=combined_models, inputs="text", outputs=["text", "text"], title="Toxic Comment Analyzer") | |
interface.launch(share=True) |