umadfsvcTest03 / app.py
Karumoon's picture
Duplicate from mitudesk/uma_diffsvc
2071bc1
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import json
import os
import tempfile
import shutil
import requests
from pathlib import Path
###################################################
from utils.hparams import hparams
from preprocessing.data_gen_utils import get_pitch_parselmouth,get_pitch_crepe
import numpy as np
import matplotlib.pyplot as plt
import IPython.display as ipd
import utils
import librosa
import torchcrepe
from infer import *
import logging
from infer_tools.infer_tool import *
import io
spk_dict = {
"东海帝皇": {"model_name": './models/uma/teio.ckpt', "config_name": './models/uma/config.yaml'}
}
print(spk_dict)
project_name = "teio"
model_path = spk_dict['东海帝皇']['model_name']
config_path= spk_dict['东海帝皇']['config_name']
hubert_gpu = False
svc_model = Svc(project_name, config_path, hubert_gpu, model_path)
print(svc_model)
def vc_fn(sid, audio_record, audio_upload, tran, pndm_speedup=20):
print(sid)
if audio_upload is not None:
audio_path = audio_upload
elif audio_record is not None:
audio_path = audio_record
else:
return "你需要上传wav文件或使用网页内置的录音!", None
tran = int(tran)
pndm_speedup = int(pndm_speedup)
print('model loaded')
# demoaudio, sr = librosa.load(audio_path)
key = tran # 音高调整,支持正负(半音)
# 加速倍数
wav_gen='./output.wav'
# Show the spinner and run the run_clip function inside the 'with' block
f0_tst, f0_pred, audio = run_clip(svc_model, file_path=audio_path, key=key, acc=pndm_speedup, use_crepe=True, use_pe=True, thre=0.1,
use_gt_mel=False, add_noise_step=500, project_name=project_name, out_path=wav_gen)
audio, sr = librosa.load(wav_gen)
f0_gen,_=get_pitch_parselmouth(*svc_model.vocoder.wav2spec(wav_gen),hparams)
f0_tst[f0_tst==0]=np.nan#ground truth f0
f0_pred[f0_pred==0]=np.nan#f0 pe predicted
f0_gen[f0_gen==0]=np.nan#f0 generated
fig=plt.figure(figsize=[15,5])
plt.plot(np.arange(0,len(f0_tst)),f0_tst,color='black',label="f0_tst")
plt.plot(np.arange(0,len(f0_pred)),f0_pred,color='orange',label="f0_pred")
plt.plot(np.arange(0,len(f0_gen)),f0_gen,color='red',label="f0_gen")
plt.axhline(librosa.note_to_hz('C4'),ls=":",c="blue",label="C4")
plt.axhline(librosa.note_to_hz('G4'),ls=":",c="green",label="G4")
plt.axhline(librosa.note_to_hz('C5'),ls=":",c="orange",label="C5")
plt.axhline(librosa.note_to_hz('F#5'),ls=":",c="red",label="F#5")
#plt.axhline(librosa.note_to_hz('A#5'),ls=":",c="black",label="分割线")
plt.legend()
plt.savefig('./temp.png')
return "Success", (sr, audio), gr.Image.update("temp.png") # hparams['audio_sample_rate']
app = gr.Blocks()
with app:
with gr.Tabs():
with gr.TabItem("Basic"):
gr.Markdown(value="""
本模型基于diffsvc训练,改自ulysses115/diffsvc_test
感谢uly大佬
请尽量使用比较短的音频
""")
speaker_id = gr.Dropdown(label="音色", choices=['东海帝皇'], value="东海帝皇")
record_input = gr.Audio(source="microphone", label="录制你的声音", type="filepath", elem_id="audio_inputs")
upload_input = gr.Audio(source="upload", label="上传音频(长度小于60秒)", type="filepath",
elem_id="audio_inputs")
vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0)
vc_speedup = gr.Number(label="加速倍数", value=20)
vc_submit = gr.Button("转换", variant="primary")
out_audio = gr.Audio(label="Output Audio")
gr.Markdown(value="""
无用信息
""")
out_message = gr.Textbox(label="Output")
gr.Markdown(value="""f0曲线可以直观的显示跑调情况:
""")
f0_image = gr.Image(label="f0曲线")
vc_submit.click(vc_fn, [speaker_id, record_input, upload_input, vc_transform, vc_speedup],
[out_message, out_audio, f0_image])
app.launch()