import gradio as gr import os from pathlib import Path import time import pandas as pd import re import time import os import whisper from pytube import YouTube import psutil num_cores = psutil.cpu_count() os.environ["OMP_NUM_THREADS"] = f"{num_cores}" import torch # is cuda available? from easynmt import EasyNMT translation_model = EasyNMT('m2m_100_418M', max_new_tokens=60, max_length=60) asr_model = whisper.load_model("base") transcribe_options = dict(beam_size=3, best_of=3, without_timestamps=False, language="Spanish") translation_models = { "Finnish": "fi", "Swedish": "sv", "Danish": "da", "English": "en", "German": "de" } device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("DEVICE IS: ") print(device) videos_out_path = Path("./videos_out") videos_out_path.mkdir(parents=True, exist_ok=True) def get_youtube(video_url): yt = YouTube(video_url) abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download() print("LADATATTU POLKUUN") print(abs_video_path) return abs_video_path async def speech_to_text(video_file_path, selected_translation_lang): """ # Youtube with translated subtitles using OpenAI Whisper and Opus-MT models. # Currently supports only English audio This space allows you to: 1. Download youtube video with a given url 2. Watch it in the first video component 3. Run automatic speech recognition on the video using Whisper 4. Translate the recognized transcriptions to Finnish, Swedish, Danish, English, German (More languages coming later) 5. Burn the translations to the original video and watch the video in the 2nd video component Speech Recognition is based on OpenAI Whisper https://github.com/openai/whisper """ if(video_file_path == None): raise ValueError("Error no video input") print(video_file_path) try: audio = whisper.load_audio(video_file_path) except Exception as e: raise RuntimeError("Error converting video to audio") last_time = time.time() try: print(f'Transcribing via local model') transcribe_options = dict(beam_size=5, best_of=5, without_timestamps=False) transcription = asr_model.transcribe(audio, **transcribe_options) #translation_options = dict(language=selected_translation_lang, beam_size=5, best_of=5, without_timestamps=False) #translations = asr_model.transcribe(audio, **translation_options) df = pd.DataFrame(columns=['start','end','text']) for i,segment in enumerate(transcription['segments']): new_row = {'start': segment['start'], 'end': segment['end'], 'text': segment['text'] } df = df.append(new_row, ignore_index=True) if selected_translation_lang is None: selected_translation_lang = 'Finnish' sentences = df['text'] df['translation'] = translation_model.translate(sentences, target_lang=translation_models.get(selected_translation_lang)) print('After translation to target language \n') return (df) except Exception as e: raise RuntimeError("Error Running inference with local model", e) def create_srt_and_burn(df, video_in): print("Starting creation of video wit srt") with open('testi.srt','w', encoding="utf-8") as file: for i in range(len(df)): file.write(str(i+1)) file.write('\n') start = df.iloc[i]['start'] milliseconds = round(start * 1000.0) hours = milliseconds // 3_600_000 milliseconds -= hours * 3_600_000 minutes = milliseconds // 60_000 milliseconds -= minutes * 60_000 seconds = milliseconds // 1_000 milliseconds -= seconds * 1_000 file.write(f"{hours}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}") stop = df.iloc[i]['end'] milliseconds = round(stop * 1000.0) hours = milliseconds // 3_600_000 milliseconds -= hours * 3_600_000 minutes = milliseconds // 60_000 milliseconds -= minutes * 60_000 seconds = milliseconds // 1_000 milliseconds -= seconds * 1_000 file.write(' --> ') file.write(f"{hours}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}") file.write('\n') file.writelines(df.iloc[i]['translation']) if int(i) != len(df)-1: file.write('\n\n') print("SRT DONE") try: file1 = open('./testi.srt', 'r', encoding="utf-8") Lines = file1.readlines() count = 0 # Strips the newline character for line in Lines: count += 1 print("{}".format(line)) print(type(video_in)) print(video_in) video_out = video_in.replace('.mp4', '_out.mp4') print(video_out) command = 'ffmpeg -i "{}" -y -vf subtitles=./testi.srt "{}"'.format(video_in, video_out) print(command) os.system(command) return video_out except Exception as e: print(e) return video_out # ---- Gradio Layout ----- video_in = gr.Video(label="Video file", mirror_webcam=False) youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True) video_out = gr.Video(label="Video Out", mirror_webcam=False) df_init = pd.DataFrame(columns=['start','end','text','translation']) selected_translation_lang = gr.Dropdown(choices=["English", "German","Finnish","Swedish", "Danish"], type="value", value="English", label="Language to translate transcriptions to", interactive=True) transcription_df = gr.DataFrame(value=df_init,label="Transcription dataframe", row_count=(0, "dynamic"), max_rows = 10) demo = gr.Blocks(css=''' #cut_btn, #reset_btn { align-self:stretch; } #\\31 3 { max-width: 540px; } .output-markdown {max-width: 65ch !important;} ''') demo.encrypt = False with demo: transcription_var = gr.Variable() with gr.Row(): with gr.Column(): gr.Markdown(''' ### This space allows you to: ##### 1. Download youtube video with a given URL ##### 2. Watch it in the first video component ##### 3. Run automatic speech recognition on the video using Whisper (Please remember to select translation language) ##### 4. Translate the recognized transcriptions to English, Finnish, Swedish, Danish and German ##### 5. Burn the translations to the original video and watch the video in the 2nd video component ''') with gr.Column(): gr.Markdown(''' ### 1. Insert Youtube URL below (Some examples below which I suggest to use for first tests) ##### 1. https://www.youtube.com/watch?v=nlMuHtV82q8&ab_channel=NothingforSale24 ##### 2. https://www.youtube.com/watch?v=JzPfMbG1vrE&ab_channel=ExplainerVideosByLauren ##### 3. https://www.youtube.com/watch?v=S68vvV0kod8&ab_channel=Pearl-CohnTelevision ''') with gr.Row(): with gr.Column(): youtube_url_in.render() download_youtube_btn = gr.Button("Step 1. Download Youtube video") download_youtube_btn.click(get_youtube, [youtube_url_in], [ video_in]) print(video_in) with gr.Row(): with gr.Column(): video_in.render() with gr.Column(): gr.Markdown(''' ##### Here you can start the transcription and translation process. ##### Be aware that processing will last for a while (35 second video took around 20 seconds in my testing) ''') transcribe_btn = gr.Button("Step 2. Transcribe and translate audio") transcribe_btn.click(speech_to_text, [video_in, selected_translation_lang], transcription_df) with gr.Row(): with gr.Column(): selected_translation_lang.render() with gr.Row(): gr.Markdown(''' ##### Here you will get transcription and translation output ##### If you see error please remember to select translation language ##### ''') with gr.Row(): with gr.Column(): transcription_df.render() with gr.Row(): with gr.Column(): translate_and_make_srt_btn = gr.Button("Step 3. Create and burn srt to video") print(video_in) translate_and_make_srt_btn.click(create_srt_and_burn, [transcription_df,video_in], [ video_out]) video_out.render() if __name__ == "__main__": demo.launch(debug=True)