from openai import OpenAI import streamlit as st from langchain_openai import ChatOpenAI from langchain_openai.embeddings import OpenAIEmbeddings from langchain_text_splitters import RecursiveCharacterTextSplitter import markdown from operator import itemgetter from langchain.schema.runnable import RunnablePassthrough from langchain_core.prompts import ChatPromptTemplate from langchain.schema import Document from dotenv import load_dotenv from langchain_community.vectorstores import Qdrant # from langchain_qdrant import Qdrant import os import pandas as pd import numpy as np st.set_page_config( page_title="Narrativ 🧠", layout="wide", initial_sidebar_state="expanded", page_icon="🧠", ) # Custom CSS for enhanced styling st.markdown(""" """, unsafe_allow_html=True) load_dotenv() OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] base_llm = ChatOpenAI(model="gpt-4o") embedding_model = OpenAIEmbeddings(model="text-embedding-3-small") #========== APP from PIL import Image, ImageEnhance image = Image.open('./data/Sentiment_index_traffic.png') #enhancer = ImageEnhance.Brightness(image) #darker_image = enhancer.enhance(0.5) # Adjust the brightness factor as needed st.image(image, output_format="PNG", clamp=True) st.title("Narrativ 📰") #check1 = st.button("Submit", key="submit_button") prompt='traffic' if 'prompt' not in st.session_state: st.session_state.prompt = [] if 'date' not in st.session_state: st.session_state.date = [] if 'messages' not in st.session_state: st.session_state.messages = [] prompt=st.session_state.prompt date=st.session_state.date # Change the sidebar background with enhanced gradient and text styling # sideb.markdown( st.session_state.messages.append({"role": "assistant", "content": f'{date} {prompt}'}) prompt1='' docs='' if prompt and len(prompt1)==0: if date: try: data=pd.read_csv('./data/sentiment_index_traffic_index_final1.csv', index_col='index', parse_dates=True, infer_datetime_format=True ).drop(columns=['llm_index','sentiment_index_hf','confidence_hf']) data = data.loc[data.index == date] filtered_data = data[data.apply(lambda row: row.astype(str).str.contains(prompt, na=False).any(), axis=1)] urls = data['url'].values.flatten() data_all = filtered_data.values.flatten() docs = data_all if len(docs)==0: st.warning("No articles found that contain the topic on the given day.") except Exception as e: st.error(f"Error processing date: {e}") else: try: data = pd.read_csv( './data/sentiment_index_traffic_index_final1.csv', index_col='index', parse_dates=True, infer_datetime_format=True ).drop(columns=['llm_index','sentiment_index_hf','confidence_hf']) filtered_data = data[data.apply(lambda row: row.astype(str).str.contains(prompt, na=False).any(), axis=1)] data_all = filtered_data.values.flatten() urls = data['url'].values.flatten() docs = data_all if len(docs)==0: st.warning("No articles found that contain the topic on the given day.") #data_all = data.values.flatten() #docs = data_all # with open(f'./data/sentiment_index_traffic_index_final1.md', "w", encoding="utf-8") as file: # file.write(str(data_all)) # with open(f'./data/sentiment_index_traffic_index_final1.md', "r", encoding="utf-8") as file_content: # docs = file_content.read() except Exception as e: st.error(f"Error loading data: {e}") elif prompt==False and len(prompt1)==0: data=pd.read_csv('./data/sentiment_index_traffic_index_final1.csv', index_col='index', parse_dates=True, infer_datetime_format=True ).drop(columns=['llm_index','sentiment_index_hf','confidence_hf']) urls = data['url'].values.flatten() data_all = data.values.flatten() docs = data_all if len(docs)==0: st.warning("No articles found that contain the topic on the given day.") if len(docs)>0 and len(prompt1)==0: docs_text = "\n".join([f"- {value}" for value in data_all if not pd.isna(value)]) docs = [Document(page_content=docs_text)] st.subheader('Excel data') st.write(data.drop(columns=['summary_date','summary'])) with st.spinner("Now, I am creating the summary..."): try: no_rows=len(data) data_summary=data.groupby('title').first() filtered_data = data_summary[data_summary.apply(lambda row: row.astype(str).str.contains(prompt, na=False).any(), axis=1)] data_all_summary = filtered_data['summary_date'].groupby('title').first().values.flatten() docs_text_summary = "\n".join([f"- {value}" for value in data_all_summary if not pd.isna(value)]) summary_data=str(docs_text_summary) #docs['summary_date'] print('heere',summary_data) summary = base_llm.invoke(f"""You are a Transurban traffic analyst, that focuses on the Express lanes. Format nicely the summary into paragraphs for Streamlit. Say how many news articles are available for the given data, the number is: {no_rows}. ## Output Format: - **Summary of Opinions:** [Concise summary of key opinions] - **Sentiment Analysis:** - Sentiment: [Positive/Negative/Neutral, this sentiment will be based on how a particular phenomenon impacts the I-495 and I-95 express lanes.] - Reasoning: [Detailed explanation here] - **Chain-of-Thought Reasoning:** [Step-by-step explanation] - **Sources:** [URLs for 5 most critical and recent articles on this topic] ## Guidelines: - Maintain objectivity and precision in your analysis. - Focus on the context specific to the Greater Washington Area. - Use professional and analytical language suitable for client reports. - Respond in the language of the article (mostly English). - From the provided context, add the URL sources, you find them here, URLs: {urls} - make sure they are clicable! related to the topic. Context: {summary_data}""").content #lcel_rag_chain.invoke({"question": prompt}) print(summary) st.chat_message("assistant").write((summary)) st.session_state.messages.append({"role": "assistant", "content": summary}) except Exception as e: st.error(f"Error generating summary: {e}") if date: with open('./data/sentiment_index_traffic_index_final_date.md', 'w') as file: file.write(str(data_all)) else: with open('./data/sentiment_index_traffic_index_final1.md', 'w') as file: file.write(str(data_all)) client = OpenAI(api_key=OPENAI_API_KEY) if "openai_model" not in st.session_state: st.session_state["openai_model"] = "gpt-4o" prompt1 = st.chat_input("Type your additional questions here...") # Suggested keywords with enhanced styling suggested_keywords = ["Summarize results", f"Explain the traffic drop", f"Explain the traffic growth"] st.markdown("**Suggested Keywords:**") cols = st.columns(len(suggested_keywords)) for idx, keyword in enumerate(suggested_keywords): if cols[idx].button(keyword, key=keyword): prompt1 = keyword if prompt1: with st.spinner("I am preparing the answer by analyzing the articles and our chat history..."): if date: file_path = f'./data/sentiment_index_traffic_index_final_date.md' else: file_path = f'./data/sentiment_index_traffic_index_final1.md' try: with open(file_path, "r", encoding="utf-8") as file_content: docs = file_content.read() except Exception as e: st.error(f"Error loading context: {e}") docs = "" # Add user message to chat history st.session_state.messages.append({"role": "user", "content": f'You are a Transurban traffic analyst, that focuses on the Express lanes I-495 and I-95 in the Greater Washington Area. Having this knowledge answer questions: {prompt1} using context from {docs}'}) # Display user message in chat message container with st.chat_message("user"): st.markdown(prompt1) # Display assistant response in chat message container with st.chat_message("assistant"): try: stream = client.chat.completions.create( model=st.session_state["openai_model"], messages=[ {"role": m["role"], "content": m["content"]} for m in st.session_state.messages ], stream=True, ) response = st.write_stream(stream) st.session_state.messages.append({"role": "assistant", "content": response}) except Exception as e: st.error(f"Error generating response: {e}")