Spaces:
Running
Running
ordering url links by date
Browse files
app.py
CHANGED
@@ -19,9 +19,7 @@ st.image('el_pic.png')
|
|
19 |
|
20 |
#@st.cache_resource
|
21 |
if "messages" not in st.session_state:
|
22 |
-
st.session_state["messages"] = [{"role":"system", "content":"""
|
23 |
-
How can I help you?
|
24 |
-
"""}]
|
25 |
|
26 |
# Display all previous messages
|
27 |
for msg in st.session_state.messages:
|
@@ -30,7 +28,6 @@ for msg in st.session_state.messages:
|
|
30 |
#initialize_session_state()
|
31 |
|
32 |
|
33 |
-
|
34 |
sideb=st.sidebar
|
35 |
with st.sidebar:
|
36 |
prompt=st.text_input("Enter topic for sentiment analysis: ")
|
@@ -89,7 +86,13 @@ if check1:
|
|
89 |
'Index':np.round(sentiment_analysis_result_reddit["Sentiment"][0]['score'],2)
|
90 |
}
|
91 |
analysis_results.append(np.append(result,np.append(article.split('URL:')[-1:], ((article.split('Date: ')[-1:])[0][0:10]))))
|
92 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
#Generate summarized message rationalize dominant sentiment
|
95 |
summary = sentiment_analysis_util.generate_summary_of_sentiment(analysis_results) #, dominant_sentiment)
|
|
|
19 |
|
20 |
#@st.cache_resource
|
21 |
if "messages" not in st.session_state:
|
22 |
+
st.session_state["messages"] = [{"role":"system", "content":"""💬 How can I help you?"""}]
|
|
|
|
|
23 |
|
24 |
# Display all previous messages
|
25 |
for msg in st.session_state.messages:
|
|
|
28 |
#initialize_session_state()
|
29 |
|
30 |
|
|
|
31 |
sideb=st.sidebar
|
32 |
with st.sidebar:
|
33 |
prompt=st.text_input("Enter topic for sentiment analysis: ")
|
|
|
86 |
'Index':np.round(sentiment_analysis_result_reddit["Sentiment"][0]['score'],2)
|
87 |
}
|
88 |
analysis_results.append(np.append(result,np.append(article.split('URL:')[-1:], ((article.split('Date: ')[-1:])[0][0:10]))))
|
89 |
+
# print(analysis_results)
|
90 |
+
# import pandas as pd
|
91 |
+
# print('STOP')
|
92 |
+
# df_analysis_results=pd.DataFrame(analysis_results['News_Article'])
|
93 |
+
# print(df_analysis_results)
|
94 |
+
# df_analysis_results.sort_values(by='Date')
|
95 |
+
# df_analysis_results.to_csv('analysis_results.csv')
|
96 |
|
97 |
#Generate summarized message rationalize dominant sentiment
|
98 |
summary = sentiment_analysis_util.generate_summary_of_sentiment(analysis_results) #, dominant_sentiment)
|