Spaces:
Running
Running
improving requirements
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
from openai import OpenAI
|
2 |
import streamlit as st
|
3 |
-
import utils as u
|
4 |
from langchain_openai import ChatOpenAI
|
5 |
from tools import sentiment_analysis_util
|
6 |
import numpy as np
|
|
|
1 |
from openai import OpenAI
|
2 |
import streamlit as st
|
|
|
3 |
from langchain_openai import ChatOpenAI
|
4 |
from tools import sentiment_analysis_util
|
5 |
import numpy as np
|
utils.py
DELETED
@@ -1,177 +0,0 @@
|
|
1 |
-
import matplotlib.pyplot as plt
|
2 |
-
import plotly.graph_objects as go
|
3 |
-
import pandas as pd
|
4 |
-
import numpy as np
|
5 |
-
from datetime import datetime, timedelta
|
6 |
-
import yfinance as yf
|
7 |
-
from plotly.subplots import make_subplots
|
8 |
-
|
9 |
-
def get_stock_price(stockticker: str) -> str:
|
10 |
-
ticker = yf.Ticker(stockticker)
|
11 |
-
todays_data = ticker.history(period='1d')
|
12 |
-
return str(round(todays_data['Close'][0], 2))
|
13 |
-
|
14 |
-
def plot_candlestick_stock_price(historical_data):
|
15 |
-
"""Useful for plotting candlestick plot for stock prices.
|
16 |
-
Use historical stock price data from yahoo finance for the week and plot them."""
|
17 |
-
df=historical_data[['Close','Open','High','Low']]
|
18 |
-
df.index=pd.to_datetime(df.index)
|
19 |
-
df.index.names=['Date']
|
20 |
-
df=df.reset_index()
|
21 |
-
|
22 |
-
fig = go.Figure(data=[go.Candlestick(x=df['Date'],
|
23 |
-
open=df['Open'],
|
24 |
-
high=df['High'],
|
25 |
-
low=df['Low'],
|
26 |
-
close=df['Close'])])
|
27 |
-
fig.show()
|
28 |
-
|
29 |
-
def historical_stock_prices(stockticker, days_ago):
|
30 |
-
"""Upload accurate data to accurate dates from yahoo finance."""
|
31 |
-
ticker = yf.Ticker(stockticker)
|
32 |
-
end_date = datetime.now()
|
33 |
-
start_date = end_date - timedelta(days=days_ago)
|
34 |
-
start_date = start_date.strftime('%Y-%m-%d')
|
35 |
-
end_date = end_date.strftime('%Y-%m-%d')
|
36 |
-
historical_data = ticker.history(start=start_date, end=end_date)
|
37 |
-
return historical_data
|
38 |
-
|
39 |
-
def plot_macd2(df):
|
40 |
-
try:
|
41 |
-
# Debugging: Print the dataframe columns and a few rows
|
42 |
-
print("DataFrame columns:", df.columns)
|
43 |
-
print("DataFrame head:\n", df.head())
|
44 |
-
|
45 |
-
# Convert DataFrame index and columns to numpy arrays
|
46 |
-
index = df.index.to_numpy()
|
47 |
-
close_prices = df['Close'].to_numpy()
|
48 |
-
macd = df['MACD'].to_numpy()
|
49 |
-
signal_line = df['Signal_Line'].to_numpy()
|
50 |
-
macd_histogram = df['MACD_Histogram'].to_numpy()
|
51 |
-
|
52 |
-
fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True, figsize=(10, 8), gridspec_kw={'height_ratios': [3, 1]})
|
53 |
-
|
54 |
-
# Subplot 1: Candlestick chart
|
55 |
-
ax1.plot(index, close_prices, label='Close', color='black')
|
56 |
-
ax1.set_title("Candlestick Chart")
|
57 |
-
ax1.set_ylabel("Price")
|
58 |
-
ax1.legend()
|
59 |
-
|
60 |
-
# Subplot 2: MACD
|
61 |
-
ax2.plot(index, macd, label='MACD', color='blue')
|
62 |
-
ax2.plot(index, signal_line, label='Signal Line', color='red')
|
63 |
-
|
64 |
-
histogram_colors = np.where(macd_histogram >= 0, 'green', 'red')
|
65 |
-
ax2.bar(index, macd_histogram, color=histogram_colors, alpha=0.6)
|
66 |
-
|
67 |
-
ax2.set_title("MACD")
|
68 |
-
ax2.set_ylabel("MACD Value")
|
69 |
-
ax2.legend()
|
70 |
-
|
71 |
-
plt.xlabel("Date")
|
72 |
-
plt.tight_layout()
|
73 |
-
|
74 |
-
return fig
|
75 |
-
except Exception as e:
|
76 |
-
print(f"Error in plot_macd: {e}")
|
77 |
-
return None
|
78 |
-
|
79 |
-
def plot_macd(df):
|
80 |
-
|
81 |
-
# Create Figure
|
82 |
-
fig = make_subplots(rows=2, cols=1, shared_xaxes=True, row_heights=[0.2, 0.1],
|
83 |
-
vertical_spacing=0.15, # Adjust vertical spacing between subplots
|
84 |
-
subplot_titles=("Candlestick Chart", "MACD")) # Add subplot titles
|
85 |
-
|
86 |
-
|
87 |
-
# Subplot 1: Plot candlestick chart
|
88 |
-
fig.add_trace(go.Candlestick(
|
89 |
-
x=df.index,
|
90 |
-
open=df['Open'],
|
91 |
-
high=df['High'],
|
92 |
-
low=df['Low'],
|
93 |
-
close=df['Close'],
|
94 |
-
increasing_line_color='#00cc96', # Green for increasing
|
95 |
-
decreasing_line_color='#ff3e3e', # Red for decreasing
|
96 |
-
showlegend=False
|
97 |
-
), row=1, col=1) # Specify row and column indices
|
98 |
-
|
99 |
-
|
100 |
-
# Subplot 2: Plot MACD
|
101 |
-
fig.add_trace(
|
102 |
-
go.Scatter(
|
103 |
-
x=df.index,
|
104 |
-
y=df['MACD'],
|
105 |
-
mode='lines',
|
106 |
-
name='MACD',
|
107 |
-
line=dict(color='blue')
|
108 |
-
),
|
109 |
-
row=2, col=1
|
110 |
-
)
|
111 |
-
|
112 |
-
fig.add_trace(
|
113 |
-
go.Scatter(
|
114 |
-
x=df.index,
|
115 |
-
y=df['Signal_Line'],
|
116 |
-
mode='lines',
|
117 |
-
name='Signal Line',
|
118 |
-
line=dict(color='red')
|
119 |
-
),
|
120 |
-
row=2, col=1
|
121 |
-
)
|
122 |
-
|
123 |
-
# Plot MACD Histogram with different colors for positive and negative values
|
124 |
-
histogram_colors = ['green' if val >= 0 else 'red' for val in df['MACD_Histogram']]
|
125 |
-
|
126 |
-
fig.add_trace(
|
127 |
-
go.Bar(
|
128 |
-
x=df.index,
|
129 |
-
y=df['MACD_Histogram'],
|
130 |
-
name='MACD Histogram',
|
131 |
-
marker_color=histogram_colors
|
132 |
-
),
|
133 |
-
row=2, col=1
|
134 |
-
)
|
135 |
-
|
136 |
-
# Update layout with zoom and pan tools enabled
|
137 |
-
layout = go.Layout(
|
138 |
-
title='MSFT Candlestick Chart and MACD Subplots',
|
139 |
-
title_font=dict(size=12), # Adjust title font size
|
140 |
-
plot_bgcolor='#f2f2f2', # Light gray background
|
141 |
-
height=600,
|
142 |
-
width=1200,
|
143 |
-
xaxis_rangeslider=dict(visible=True, thickness=0.03),
|
144 |
-
)
|
145 |
-
|
146 |
-
# Update the layout of the entire figure
|
147 |
-
fig.update_layout(layout)
|
148 |
-
fig.update_yaxes(fixedrange=False, row=1, col=1)
|
149 |
-
fig.update_yaxes(fixedrange=True, row=2, col=1)
|
150 |
-
fig.update_xaxes(type='category', row=1, col=1)
|
151 |
-
fig.update_xaxes(type='category', nticks=10, row=2, col=1)
|
152 |
-
|
153 |
-
fig.show()
|
154 |
-
#return fig
|
155 |
-
|
156 |
-
def calculate_MACD(df, fast_period=12, slow_period=26, signal_period=9):
|
157 |
-
"""
|
158 |
-
Calculates the MACD (Moving Average Convergence Divergence) and related indicators.
|
159 |
-
|
160 |
-
Parameters:
|
161 |
-
df (DataFrame): A pandas DataFrame containing at least a 'Close' column with closing prices.
|
162 |
-
fast_period (int): The period for the fast EMA (default is 12).
|
163 |
-
slow_period (int): The period for the slow EMA (default is 26).
|
164 |
-
signal_period (int): The period for the signal line EMA (default is 9).
|
165 |
-
|
166 |
-
Returns:
|
167 |
-
DataFrame: A pandas DataFrame with the original data and added columns for MACD, Signal Line, and MACD Histogram.
|
168 |
-
"""
|
169 |
-
|
170 |
-
df['EMA_fast'] = df['Close'].ewm(span=fast_period, adjust=False).mean()
|
171 |
-
df['EMA_slow'] = df['Close'].ewm(span=slow_period, adjust=False).mean()
|
172 |
-
df['MACD'] = df['EMA_fast'] - df['EMA_slow']
|
173 |
-
|
174 |
-
df['Signal_Line'] = df['MACD'].ewm(span=signal_period, adjust=False).mean()
|
175 |
-
df['MACD_Histogram'] = df['MACD'] - df['Signal_Line']
|
176 |
-
|
177 |
-
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|