File size: 8,099 Bytes
8ad9e26
8ba98ee
fa4087a
8ba98ee
 
 
 
 
 
 
 
 
8ad9e26
5dfb298
8ba98ee
fa4087a
 
8ad9e26
b6fb8c4
fa4087a
8ba98ee
8ad9e26
 
5dfb298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ad9e26
 
 
 
80a73f7
8ad9e26
d617bd5
8ad9e26
 
8ba98ee
8ad9e26
b28a1a9
8ad9e26
b28a1a9
8ad9e26
 
b28a1a9
8ad9e26
 
b28a1a9
 
 
4dfaeff
064635f
4dfaeff
5cb0bc3
 
 
 
b28a1a9
 
4dfaeff
8ba98ee
 
 
 
 
4dfaeff
 
 
5cb0bc3
 
8ba98ee
 
 
5cb0bc3
8ba98ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b28a1a9
8ba98ee
b28a1a9
8ba98ee
 
b28a1a9
8ba98ee
b28a1a9
 
b6fb8c4
 
5dfb298
 
 
8ba98ee
8ad9e26
5dfb298
b6fb8c4
8ad9e26
 
 
 
 
4dfaeff
5dfb298
8ad9e26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b28a1a9
 
 
 
 
 
8ad9e26
4dfaeff
 
8ad9e26
 
 
5cb0bc3
 
 
 
 
 
 
 
 
 
 
 
8ad9e26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cb0bc3
 
 
8ad9e26
 
 
 
 
 
 
5cb0bc3
 
8ad9e26
 
 
 
5cb0bc3
 
 
 
 
4dfaeff
5cb0bc3
 
 
 
 
 
8ad9e26
 
5cb0bc3
 
 
8ad9e26
b28a1a9
 
8ad9e26
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# -*- coding:utf-8 -*-
import os
from pathlib import Path
import gradio as gr
from .webui_locale import I18nAuto

i18n = I18nAuto()  # internationalization

CHATGLM_MODEL = None
CHATGLM_TOKENIZER = None
LLAMA_MODEL = None
LLAMA_INFERENCER = None

# ChatGPT 設置
INITIAL_SYSTEM_PROMPT = "You are a helpful assistant."
API_HOST = "api.openai.com"
COMPLETION_URL = "https://api.openai.com/v1/chat/completions"
BALANCE_API_URL="https://api.openai.com/dashboard/billing/credit_grants"
USAGE_API_URL="https://api.openai.com/dashboard/billing/usage"
HISTORY_DIR = Path("history")
HISTORY_DIR = "history"
TEMPLATES_DIR = "templates"

# 錯誤資訊
STANDARD_ERROR_MSG = i18n("☹️發生了錯誤:")  # 錯誤資訊的標準首碼
GENERAL_ERROR_MSG = i18n("獲取對話時發生錯誤,請查看後臺日誌")
ERROR_RETRIEVE_MSG = i18n("請檢查網路連接,或者API-Key是否有效。")
CONNECTION_TIMEOUT_MSG = i18n("連接逾時,無法獲取對話。")  # 連接逾時
READ_TIMEOUT_MSG = i18n("讀取超時,無法獲取對話。")  # 讀取超時
PROXY_ERROR_MSG = i18n("代理錯誤,無法獲取對話。")  # 代理錯誤
SSL_ERROR_PROMPT = i18n("SSL錯誤,無法獲取對話。")  # SSL 錯誤
NO_APIKEY_MSG = i18n("API key為空,請檢查是否輸入正確。")  # API key 長度不足 51 位
NO_INPUT_MSG = i18n("請輸入對話內容。")  # 未輸入對話內容
BILLING_NOT_APPLICABLE_MSG = i18n("帳單資訊不適用") # 本地運行的模型返回的帳單資訊

TIMEOUT_STREAMING = 60  # 流式對話時的超時時間
TIMEOUT_ALL = 200  # 非流式對話時的超時時間
ENABLE_STREAMING_OPTION = True  # 是否啟用選擇選擇是否即時顯示回答的勾選框
HIDE_MY_KEY = False  # 如果你想在UI中隱藏你的 API 金鑰,將此值設置為 True
CONCURRENT_COUNT = 100 # 允許同時使用的用戶數量

SIM_K = 5
INDEX_QUERY_TEMPRATURE = 1.0

CHUANHU_TITLE = i18n("🚀 中華大學 孔維珺 B10902211  🚀")

CHUANHU_DESCRIPTION = i18n("中華大學 B10902211 孔維珺")


ONLINE_MODELS = [
    "gpt-3.5-turbo",
    "gpt-3.5-turbo-16k",
    "gpt-3.5-turbo-0301",
    "gpt-3.5-turbo-0613",
    "gpt-4",
    "gpt-4-0314",
    "gpt-4-0613",
    "gpt-4-32k",
    "gpt-4-32k-0314",
    "gpt-4-32k-0613",
    "川虎助理",
    "川虎助理 Pro",
    "GooglePaLM",
    "xmchat",
    "Azure OpenAI",
    "yuanai-1.0-base_10B",
    "yuanai-1.0-translate",
    "yuanai-1.0-dialog",
    "yuanai-1.0-rhythm_poems",
    "minimax-abab4-chat",
    "minimax-abab5-chat",
    "midjourney"
]

LOCAL_MODELS = [
    "chatglm-6b",
    "chatglm-6b-int4",
    "chatglm-6b-int4-ge",
    "chatglm2-6b",
    "chatglm2-6b-int4",
    "StableLM",
    "MOSS",
    "llama-7b-hf",
    "llama-13b-hf",
    "llama-30b-hf",
    "llama-65b-hf",
]

if os.environ.get('HIDE_LOCAL_MODELS', 'false') == 'true':
    MODELS = ONLINE_MODELS
else:
    MODELS = ONLINE_MODELS + LOCAL_MODELS

DEFAULT_MODEL = 0

os.makedirs("models", exist_ok=True)
os.makedirs("lora", exist_ok=True)
os.makedirs("history", exist_ok=True)
for dir_name in os.listdir("models"):
    if os.path.isdir(os.path.join("models", dir_name)):
        if dir_name not in MODELS:
            MODELS.append(dir_name)

MODEL_TOKEN_LIMIT = {
    "gpt-3.5-turbo": 4096,
    "gpt-3.5-turbo-16k": 16384,
    "gpt-3.5-turbo-0301": 4096,
    "gpt-3.5-turbo-0613": 4096,
    "gpt-4": 8192,
    "gpt-4-0314": 8192,
    "gpt-4-0613": 8192,
    "gpt-4-32k": 32768,
    "gpt-4-32k-0314": 32768,
    "gpt-4-32k-0613": 32768
}

TOKEN_OFFSET = 1000 # 模型的token上限減去這個值,得到軟上限。到達軟上限之後,自動嘗試減少token佔用。
DEFAULT_TOKEN_LIMIT = 3000 # 默認的token上限
REDUCE_TOKEN_FACTOR = 0.5 # 與模型token上限想乘,得到目標token數。減少token佔用時,將token佔用減少到目標token數以下。

REPLY_LANGUAGES = [
    "簡體中文",
    "繁體中文",
    "English",
    "日本語",
    "Español",
    "Français",
    "Deutsch",
    "한국어",
    "跟隨問題語言(不穩定)"
]


WEBSEARCH_PTOMPT_TEMPLATE = """\
Web search results:

{web_results}
Current date: {current_date}

Instructions: Using the provided web search results, write a comprehensive reply to the given query. Make sure to cite results using [[number](URL)] notation after the reference. If the provided search results refer to multiple subjects with the same name, write separate answers for each subject.
Query: {query}
Reply in {reply_language}
"""

PROMPT_TEMPLATE = """\
Context information is below.
---------------------
{context_str}
---------------------
Current date: {current_date}.
Using the provided context information, write a comprehensive reply to the given query.
Make sure to cite results using [number] notation after the reference.
If the provided context information refer to multiple subjects with the same name, write separate answers for each subject.
Use prior knowledge only if the given context didn't provide enough information.
Answer the question: {query_str}
Reply in {reply_language}
"""

REFINE_TEMPLATE = """\
The original question is as follows: {query_str}
We have provided an existing answer: {existing_answer}
We have the opportunity to refine the existing answer
(only if needed) with some more context below.
------------
{context_msg}
------------
Given the new context, refine the original answer to better
Reply in {reply_language}
If the context isn't useful, return the original answer.
"""

SUMMARIZE_PROMPT = """Write a concise summary of the following:

{text}

CONCISE SUMMARY IN 中文:"""

ALREADY_CONVERTED_MARK = "<!-- ALREADY CONVERTED BY PARSER. -->"
START_OF_OUTPUT_MARK = "<!-- SOO IN MESSAGE -->"
END_OF_OUTPUT_MARK = "<!-- EOO IN MESSAGE -->"

small_and_beautiful_theme = gr.themes.Soft(
        primary_hue=gr.themes.Color(
            c50="#EBFAF2",
            c100="#CFF3E1",
            c200="#A8EAC8",
            c300="#77DEA9",
            c400="#3FD086",
            c500="#02C160",
            c600="#06AE56",
            c700="#05974E",
            c800="#057F45",
            c900="#04673D",
            c950="#2E5541",
            name="small_and_beautiful",
        ),
        secondary_hue=gr.themes.Color(
            c50="#576b95",
            c100="#576b95",
            c200="#576b95",
            c300="#576b95",
            c400="#576b95",
            c500="#576b95",
            c600="#576b95",
            c700="#576b95",
            c800="#576b95",
            c900="#576b95",
            c950="#576b95",
        ),
        neutral_hue=gr.themes.Color(
            name="gray",
            c50="#f6f7f8",
            # c100="#f3f4f6",
            c100="#F2F2F2",
            c200="#e5e7eb",
            c300="#d1d5db",
            c400="#B2B2B2",
            c500="#808080",
            c600="#636363",
            c700="#515151",
            c800="#393939",
            # c900="#272727",
            c900="#2B2B2B",
            c950="#171717",
        ),
        radius_size=gr.themes.sizes.radius_sm,
    ).set(
        # button_primary_background_fill="*primary_500",
        button_primary_background_fill_dark="*primary_600",
        # button_primary_background_fill_hover="*primary_400",
        # button_primary_border_color="*primary_500",
        button_primary_border_color_dark="*primary_600",
        button_primary_text_color="white",
        button_primary_text_color_dark="white",
        button_secondary_background_fill="*neutral_100",
        button_secondary_background_fill_hover="*neutral_50",
        button_secondary_background_fill_dark="*neutral_900",
        button_secondary_text_color="*neutral_800",
        button_secondary_text_color_dark="white",
        # background_fill_primary="#F7F7F7",
        # background_fill_primary_dark="#1F1F1F",
        # block_title_text_color="*primary_500",
        block_title_background_fill_dark="*primary_900",
        block_label_background_fill_dark="*primary_900",
        input_background_fill="#F6F6F6",
        chatbot_code_background_color="*neutral_950",
        chatbot_code_background_color_dark="*neutral_950",
    )