Update app.py
Browse files
app.py
CHANGED
@@ -1,60 +1,98 @@
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
-
|
23 |
-
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
)
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
1 |
|
2 |
+
import os
|
3 |
+
from langchain_community.document_loaders import TextLoader
|
4 |
+
from langchain.vectorstores import Chroma
|
5 |
+
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
|
6 |
+
from langchain_community.llms import HuggingFaceHub
|
7 |
+
from langchain.prompts import PromptTemplate
|
8 |
+
from langchain.memory import ConversationBufferMemory
|
9 |
+
from langchain.chains import ConversationalRetrievalChain
|
10 |
+
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
11 |
+
from langchain_core.output_parsers import StrOutputParser
|
12 |
+
from langchain_core.runnables import RunnablePassthrough
|
13 |
+
import gradio as gr
|
14 |
+
import wandb
|
15 |
|
16 |
+
# Initialize the chatbot
|
17 |
+
loaders = []
|
18 |
+
folder_path = "Data"
|
19 |
+
for i in range(12):
|
20 |
+
file_path = os.path.join(folder_path,"{}.txt".format(i))
|
21 |
+
loaders.append(TextLoader(file_path))
|
22 |
+
docs = []
|
23 |
+
for loader in loaders:
|
24 |
+
docs.extend(loader.load())
|
25 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
26 |
+
embeddings = HuggingFaceInferenceAPIEmbeddings(
|
27 |
+
api_key=HF_TOKEN,
|
28 |
+
model_name="sentence-transformers/all-mpnet-base-v2"
|
29 |
+
)
|
30 |
+
vectordb = Chroma.from_documents(
|
31 |
+
documents=docs,
|
32 |
+
embedding=embeddings
|
33 |
+
)
|
34 |
+
llm = HuggingFaceHub(
|
35 |
+
repo_id="google/gemma-1.1-7b-it",
|
36 |
+
task="text-generation",
|
37 |
+
model_kwargs={
|
38 |
+
"max_new_tokens": 512,
|
39 |
+
"top_k": 5,
|
40 |
+
"temperature": 0.1,
|
41 |
+
"repetition_penalty": 1.03,
|
42 |
+
},
|
43 |
+
huggingfacehub_api_token=HF_TOKEN
|
44 |
+
)
|
45 |
+
template = """
|
46 |
+
You are a Mental Health Chatbot. Help the user with their mental health concerns.
|
47 |
+
Use the context below to answer the questions {context}
|
48 |
+
Question: {question}
|
49 |
+
Helpful Answer:"""
|
50 |
+
|
51 |
+
QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context", "question"],template=template)
|
52 |
+
memory = ConversationBufferMemory(
|
53 |
+
memory_key="chat_history",
|
54 |
+
return_messages=True
|
55 |
+
)
|
56 |
+
retriever = vectordb.as_retriever()
|
57 |
+
qa = ConversationalRetrievalChain.from_llm(
|
58 |
+
llm,
|
59 |
+
retriever=retriever,
|
60 |
+
memory=memory,
|
61 |
+
)
|
62 |
+
contextualize_q_system_prompt = """
|
63 |
+
Given a chat history and the latest user question
|
64 |
+
which might reference context in the chat history,
|
65 |
+
formulate a standalone question
|
66 |
+
which can be understood without the chat history.
|
67 |
+
Do NOT answer the question, just reformulate it if needed and otherwise return it as is."""
|
68 |
+
contextualize_q_prompt = ChatPromptTemplate.from_messages(
|
69 |
+
[
|
70 |
+
("system", contextualize_q_system_prompt),
|
71 |
+
MessagesPlaceholder(variable_name="chat_history"),
|
72 |
+
("human", "{question}"),
|
73 |
+
]
|
74 |
+
)
|
75 |
+
contextualize_q_chain = contextualize_q_prompt | llm | StrOutputParser()
|
76 |
+
def contextualized_question(input: dict):
|
77 |
+
if input.get("chat_history"):
|
78 |
+
return contextualize_q_chain
|
79 |
+
else:
|
80 |
+
return input["question"]
|
81 |
+
rag_chain = (
|
82 |
+
RunnablePassthrough.assign(
|
83 |
+
context=contextualized_question | retriever
|
84 |
)
|
85 |
+
| QA_CHAIN_PROMPT
|
86 |
+
| llm
|
87 |
+
)
|
88 |
+
wandb.login(key=os.getenv("key"))
|
89 |
+
os.environ["LANGCHAIN_WANDB_TRACING"] = "true"
|
90 |
+
os.environ["WANDB_PROJECT"] = "Mental_Health_ChatBot"
|
91 |
+
print("Welcome to the Mental Health Chatbot. How can I help you today?")
|
92 |
+
chat_history = []
|
93 |
+
def predict(message, history):
|
94 |
+
ai_msg = rag_chain.invoke({"question": message, "chat_history": chat_history})
|
95 |
+
idx = ai_msg.find("Answer")
|
96 |
+
chat_history.extend([HumanMessage(content=message), ai_msg])
|
97 |
+
return ai_msg[idx:]
|
98 |
+
gr.ChatInterface(predict).launch()
|