|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Dict, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from .transformer_garm_2d import Transformer2DModel |
|
|
|
from diffusers.utils import is_torch_version, logging |
|
from diffusers.utils.torch_utils import apply_freeu |
|
from diffusers.models.activations import get_activation |
|
from diffusers.models.attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0 |
|
from diffusers.models.dual_transformer_2d import DualTransformer2DModel |
|
from diffusers.models.normalization import AdaGroupNorm |
|
from diffusers.models.resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D |
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def get_down_block( |
|
down_block_type: str, |
|
num_layers: int, |
|
in_channels: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
add_downsample: bool, |
|
resnet_eps: float, |
|
resnet_act_fn: str, |
|
transformer_layers_per_block: int = 1, |
|
num_attention_heads: Optional[int] = None, |
|
resnet_groups: Optional[int] = None, |
|
cross_attention_dim: Optional[int] = None, |
|
downsample_padding: Optional[int] = None, |
|
dual_cross_attention: bool = False, |
|
use_linear_projection: bool = False, |
|
only_cross_attention: bool = False, |
|
upcast_attention: bool = False, |
|
resnet_time_scale_shift: str = "default", |
|
attention_type: str = "default", |
|
resnet_skip_time_act: bool = False, |
|
resnet_out_scale_factor: float = 1.0, |
|
cross_attention_norm: Optional[str] = None, |
|
attention_head_dim: Optional[int] = None, |
|
downsample_type: Optional[str] = None, |
|
dropout: float = 0.0, |
|
): |
|
|
|
if attention_head_dim is None: |
|
logger.warn( |
|
f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}." |
|
) |
|
attention_head_dim = num_attention_heads |
|
|
|
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type |
|
if down_block_type == "DownBlock2D": |
|
return DownBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
dropout=dropout, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
downsample_padding=downsample_padding, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
) |
|
elif down_block_type == "ResnetDownsampleBlock2D": |
|
return ResnetDownsampleBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
dropout=dropout, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
skip_time_act=resnet_skip_time_act, |
|
output_scale_factor=resnet_out_scale_factor, |
|
) |
|
elif down_block_type == "AttnDownBlock2D": |
|
if add_downsample is False: |
|
downsample_type = None |
|
else: |
|
downsample_type = downsample_type or "conv" |
|
return AttnDownBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
dropout=dropout, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
downsample_padding=downsample_padding, |
|
attention_head_dim=attention_head_dim, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
downsample_type=downsample_type, |
|
) |
|
elif down_block_type == "CrossAttnDownBlock2D": |
|
if cross_attention_dim is None: |
|
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D") |
|
return CrossAttnDownBlock2D( |
|
num_layers=num_layers, |
|
transformer_layers_per_block=transformer_layers_per_block, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
dropout=dropout, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
downsample_padding=downsample_padding, |
|
cross_attention_dim=cross_attention_dim, |
|
num_attention_heads=num_attention_heads, |
|
dual_cross_attention=dual_cross_attention, |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
attention_type=attention_type, |
|
) |
|
elif down_block_type == "SimpleCrossAttnDownBlock2D": |
|
if cross_attention_dim is None: |
|
raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D") |
|
return SimpleCrossAttnDownBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
dropout=dropout, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
cross_attention_dim=cross_attention_dim, |
|
attention_head_dim=attention_head_dim, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
skip_time_act=resnet_skip_time_act, |
|
output_scale_factor=resnet_out_scale_factor, |
|
only_cross_attention=only_cross_attention, |
|
cross_attention_norm=cross_attention_norm, |
|
) |
|
elif down_block_type == "SkipDownBlock2D": |
|
return SkipDownBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
dropout=dropout, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
downsample_padding=downsample_padding, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
) |
|
elif down_block_type == "AttnSkipDownBlock2D": |
|
return AttnSkipDownBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
dropout=dropout, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
attention_head_dim=attention_head_dim, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
) |
|
elif down_block_type == "DownEncoderBlock2D": |
|
return DownEncoderBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
dropout=dropout, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
downsample_padding=downsample_padding, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
) |
|
elif down_block_type == "AttnDownEncoderBlock2D": |
|
return AttnDownEncoderBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
dropout=dropout, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
downsample_padding=downsample_padding, |
|
attention_head_dim=attention_head_dim, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
) |
|
elif down_block_type == "KDownBlock2D": |
|
return KDownBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
dropout=dropout, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
) |
|
elif down_block_type == "KCrossAttnDownBlock2D": |
|
return KCrossAttnDownBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
dropout=dropout, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
cross_attention_dim=cross_attention_dim, |
|
attention_head_dim=attention_head_dim, |
|
add_self_attention=True if not add_downsample else False, |
|
) |
|
raise ValueError(f"{down_block_type} does not exist.") |
|
|
|
|
|
def get_up_block( |
|
up_block_type: str, |
|
num_layers: int, |
|
in_channels: int, |
|
out_channels: int, |
|
prev_output_channel: int, |
|
temb_channels: int, |
|
add_upsample: bool, |
|
resnet_eps: float, |
|
resnet_act_fn: str, |
|
resolution_idx: Optional[int] = None, |
|
transformer_layers_per_block: int = 1, |
|
num_attention_heads: Optional[int] = None, |
|
resnet_groups: Optional[int] = None, |
|
cross_attention_dim: Optional[int] = None, |
|
dual_cross_attention: bool = False, |
|
use_linear_projection: bool = False, |
|
only_cross_attention: bool = False, |
|
upcast_attention: bool = False, |
|
resnet_time_scale_shift: str = "default", |
|
attention_type: str = "default", |
|
resnet_skip_time_act: bool = False, |
|
resnet_out_scale_factor: float = 1.0, |
|
cross_attention_norm: Optional[str] = None, |
|
attention_head_dim: Optional[int] = None, |
|
upsample_type: Optional[str] = None, |
|
dropout: float = 0.0, |
|
) -> nn.Module: |
|
|
|
if attention_head_dim is None: |
|
logger.warn( |
|
f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}." |
|
) |
|
attention_head_dim = num_attention_heads |
|
|
|
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type |
|
if up_block_type == "UpBlock2D": |
|
return UpBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=temb_channels, |
|
resolution_idx=resolution_idx, |
|
dropout=dropout, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
) |
|
elif up_block_type == "ResnetUpsampleBlock2D": |
|
return ResnetUpsampleBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=temb_channels, |
|
resolution_idx=resolution_idx, |
|
dropout=dropout, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
skip_time_act=resnet_skip_time_act, |
|
output_scale_factor=resnet_out_scale_factor, |
|
) |
|
elif up_block_type == "CrossAttnUpBlock2D": |
|
if cross_attention_dim is None: |
|
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D") |
|
return CrossAttnUpBlock2D( |
|
num_layers=num_layers, |
|
transformer_layers_per_block=transformer_layers_per_block, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=temb_channels, |
|
resolution_idx=resolution_idx, |
|
dropout=dropout, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
cross_attention_dim=cross_attention_dim, |
|
num_attention_heads=num_attention_heads, |
|
dual_cross_attention=dual_cross_attention, |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
attention_type=attention_type, |
|
) |
|
elif up_block_type == "SimpleCrossAttnUpBlock2D": |
|
if cross_attention_dim is None: |
|
raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D") |
|
return SimpleCrossAttnUpBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=temb_channels, |
|
resolution_idx=resolution_idx, |
|
dropout=dropout, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
cross_attention_dim=cross_attention_dim, |
|
attention_head_dim=attention_head_dim, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
skip_time_act=resnet_skip_time_act, |
|
output_scale_factor=resnet_out_scale_factor, |
|
only_cross_attention=only_cross_attention, |
|
cross_attention_norm=cross_attention_norm, |
|
) |
|
elif up_block_type == "AttnUpBlock2D": |
|
if add_upsample is False: |
|
upsample_type = None |
|
else: |
|
upsample_type = upsample_type or "conv" |
|
|
|
return AttnUpBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=temb_channels, |
|
resolution_idx=resolution_idx, |
|
dropout=dropout, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
attention_head_dim=attention_head_dim, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
upsample_type=upsample_type, |
|
) |
|
elif up_block_type == "SkipUpBlock2D": |
|
return SkipUpBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=temb_channels, |
|
resolution_idx=resolution_idx, |
|
dropout=dropout, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
) |
|
elif up_block_type == "AttnSkipUpBlock2D": |
|
return AttnSkipUpBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=temb_channels, |
|
resolution_idx=resolution_idx, |
|
dropout=dropout, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
attention_head_dim=attention_head_dim, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
) |
|
elif up_block_type == "UpDecoderBlock2D": |
|
return UpDecoderBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
resolution_idx=resolution_idx, |
|
dropout=dropout, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
temb_channels=temb_channels, |
|
) |
|
elif up_block_type == "AttnUpDecoderBlock2D": |
|
return AttnUpDecoderBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
resolution_idx=resolution_idx, |
|
dropout=dropout, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
attention_head_dim=attention_head_dim, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
temb_channels=temb_channels, |
|
) |
|
elif up_block_type == "KUpBlock2D": |
|
return KUpBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
resolution_idx=resolution_idx, |
|
dropout=dropout, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
) |
|
elif up_block_type == "KCrossAttnUpBlock2D": |
|
return KCrossAttnUpBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
resolution_idx=resolution_idx, |
|
dropout=dropout, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
cross_attention_dim=cross_attention_dim, |
|
attention_head_dim=attention_head_dim, |
|
) |
|
|
|
raise ValueError(f"{up_block_type} does not exist.") |
|
|
|
|
|
class AutoencoderTinyBlock(nn.Module): |
|
""" |
|
Tiny Autoencoder block used in [`AutoencoderTiny`]. It is a mini residual module consisting of plain conv + ReLU |
|
blocks. |
|
|
|
Args: |
|
in_channels (`int`): The number of input channels. |
|
out_channels (`int`): The number of output channels. |
|
act_fn (`str`): |
|
` The activation function to use. Supported values are `"swish"`, `"mish"`, `"gelu"`, and `"relu"`. |
|
|
|
Returns: |
|
`torch.FloatTensor`: A tensor with the same shape as the input tensor, but with the number of channels equal to |
|
`out_channels`. |
|
""" |
|
|
|
def __init__(self, in_channels: int, out_channels: int, act_fn: str): |
|
super().__init__() |
|
act_fn = get_activation(act_fn) |
|
self.conv = nn.Sequential( |
|
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), |
|
act_fn, |
|
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), |
|
act_fn, |
|
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), |
|
) |
|
self.skip = ( |
|
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False) |
|
if in_channels != out_channels |
|
else nn.Identity() |
|
) |
|
self.fuse = nn.ReLU() |
|
|
|
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor: |
|
return self.fuse(self.conv(x) + self.skip(x)) |
|
|
|
|
|
class UNetMidBlock2D(nn.Module): |
|
""" |
|
A 2D UNet mid-block [`UNetMidBlock2D`] with multiple residual blocks and optional attention blocks. |
|
|
|
Args: |
|
in_channels (`int`): The number of input channels. |
|
temb_channels (`int`): The number of temporal embedding channels. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout rate. |
|
num_layers (`int`, *optional*, defaults to 1): The number of residual blocks. |
|
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks. |
|
resnet_time_scale_shift (`str`, *optional*, defaults to `default`): |
|
The type of normalization to apply to the time embeddings. This can help to improve the performance of the |
|
model on tasks with long-range temporal dependencies. |
|
resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks. |
|
resnet_groups (`int`, *optional*, defaults to 32): |
|
The number of groups to use in the group normalization layers of the resnet blocks. |
|
attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks. |
|
resnet_pre_norm (`bool`, *optional*, defaults to `True`): |
|
Whether to use pre-normalization for the resnet blocks. |
|
add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks. |
|
attention_head_dim (`int`, *optional*, defaults to 1): |
|
Dimension of a single attention head. The number of attention heads is determined based on this value and |
|
the number of input channels. |
|
output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor. |
|
|
|
Returns: |
|
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size, |
|
in_channels, height, width)`. |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
attn_groups: Optional[int] = None, |
|
resnet_pre_norm: bool = True, |
|
add_attention: bool = True, |
|
attention_head_dim: int = 1, |
|
output_scale_factor: float = 1.0, |
|
): |
|
super().__init__() |
|
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) |
|
self.add_attention = add_attention |
|
|
|
if attn_groups is None: |
|
attn_groups = resnet_groups if resnet_time_scale_shift == "default" else None |
|
|
|
|
|
resnets = [ |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
] |
|
attentions = [] |
|
|
|
if attention_head_dim is None: |
|
logger.warn( |
|
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}." |
|
) |
|
attention_head_dim = in_channels |
|
|
|
for _ in range(num_layers): |
|
if self.add_attention: |
|
attentions.append( |
|
Attention( |
|
in_channels, |
|
heads=in_channels // attention_head_dim, |
|
dim_head=attention_head_dim, |
|
rescale_output_factor=output_scale_factor, |
|
eps=resnet_eps, |
|
norm_num_groups=attn_groups, |
|
spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None, |
|
residual_connection=True, |
|
bias=True, |
|
upcast_softmax=True, |
|
_from_deprecated_attn_block=True, |
|
) |
|
) |
|
else: |
|
attentions.append(None) |
|
|
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
|
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor: |
|
hidden_states = self.resnets[0](hidden_states, temb) |
|
for attn, resnet in zip(self.attentions, self.resnets[1:]): |
|
if attn is not None: |
|
hidden_states = attn(hidden_states, temb=temb) |
|
hidden_states = resnet(hidden_states, temb) |
|
|
|
return hidden_states |
|
|
|
|
|
class UNetMidBlock2DCrossAttn(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
transformer_layers_per_block: Union[int, Tuple[int]] = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
num_attention_heads: int = 1, |
|
output_scale_factor: float = 1.0, |
|
cross_attention_dim: int = 1280, |
|
dual_cross_attention: bool = False, |
|
use_linear_projection: bool = False, |
|
upcast_attention: bool = False, |
|
attention_type: str = "default", |
|
): |
|
super().__init__() |
|
|
|
self.has_cross_attention = True |
|
self.num_attention_heads = num_attention_heads |
|
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) |
|
|
|
|
|
if isinstance(transformer_layers_per_block, int): |
|
transformer_layers_per_block = [transformer_layers_per_block] * num_layers |
|
|
|
|
|
resnets = [ |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
] |
|
attentions = [] |
|
|
|
for i in range(num_layers): |
|
if not dual_cross_attention: |
|
attentions.append( |
|
Transformer2DModel( |
|
num_attention_heads, |
|
in_channels // num_attention_heads, |
|
in_channels=in_channels, |
|
num_layers=transformer_layers_per_block[i], |
|
cross_attention_dim=cross_attention_dim, |
|
norm_num_groups=resnet_groups, |
|
use_linear_projection=use_linear_projection, |
|
upcast_attention=upcast_attention, |
|
attention_type=attention_type, |
|
) |
|
) |
|
else: |
|
attentions.append( |
|
DualTransformer2DModel( |
|
num_attention_heads, |
|
in_channels // num_attention_heads, |
|
in_channels=in_channels, |
|
num_layers=1, |
|
cross_attention_dim=cross_attention_dim, |
|
norm_num_groups=resnet_groups, |
|
) |
|
) |
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
|
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
spatial_attn_inputs = [], |
|
temb: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
) -> torch.FloatTensor: |
|
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 |
|
hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale) |
|
for attn, resnet in zip(self.attentions, self.resnets[1:]): |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
hidden_states, spatial_attn_inputs = attn( |
|
hidden_states, |
|
spatial_attn_inputs=spatial_attn_inputs, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
attention_mask=attention_mask, |
|
encoder_attention_mask=encoder_attention_mask, |
|
return_dict=False, |
|
) |
|
hidden_states = hidden_states[0] |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), |
|
hidden_states, |
|
temb, |
|
**ckpt_kwargs, |
|
) |
|
else: |
|
hidden_states, spatial_attn_inputs = attn( |
|
hidden_states, |
|
spatial_attn_inputs=spatial_attn_inputs, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
attention_mask=attention_mask, |
|
encoder_attention_mask=encoder_attention_mask, |
|
return_dict=False, |
|
) |
|
hidden_states = hidden_states[0] |
|
hidden_states = resnet(hidden_states, temb, scale=lora_scale) |
|
|
|
return hidden_states, spatial_attn_inputs |
|
|
|
|
|
class UNetMidBlock2DSimpleCrossAttn(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
attention_head_dim: int = 1, |
|
output_scale_factor: float = 1.0, |
|
cross_attention_dim: int = 1280, |
|
skip_time_act: bool = False, |
|
only_cross_attention: bool = False, |
|
cross_attention_norm: Optional[str] = None, |
|
): |
|
super().__init__() |
|
|
|
self.has_cross_attention = True |
|
|
|
self.attention_head_dim = attention_head_dim |
|
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) |
|
|
|
self.num_heads = in_channels // self.attention_head_dim |
|
|
|
|
|
resnets = [ |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
skip_time_act=skip_time_act, |
|
) |
|
] |
|
attentions = [] |
|
|
|
for _ in range(num_layers): |
|
processor = ( |
|
AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor() |
|
) |
|
|
|
attentions.append( |
|
Attention( |
|
query_dim=in_channels, |
|
cross_attention_dim=in_channels, |
|
heads=self.num_heads, |
|
dim_head=self.attention_head_dim, |
|
added_kv_proj_dim=cross_attention_dim, |
|
norm_num_groups=resnet_groups, |
|
bias=True, |
|
upcast_softmax=True, |
|
only_cross_attention=only_cross_attention, |
|
cross_attention_norm=cross_attention_norm, |
|
processor=processor, |
|
) |
|
) |
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
skip_time_act=skip_time_act, |
|
) |
|
) |
|
|
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
temb: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
) -> torch.FloatTensor: |
|
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} |
|
lora_scale = cross_attention_kwargs.get("scale", 1.0) |
|
|
|
if attention_mask is None: |
|
|
|
mask = None if encoder_hidden_states is None else encoder_attention_mask |
|
else: |
|
|
|
|
|
|
|
|
|
|
|
mask = attention_mask |
|
|
|
hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale) |
|
for attn, resnet in zip(self.attentions, self.resnets[1:]): |
|
|
|
hidden_states = attn( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=mask, |
|
**cross_attention_kwargs, |
|
) |
|
|
|
|
|
hidden_states = resnet(hidden_states, temb, scale=lora_scale) |
|
|
|
return hidden_states |
|
|
|
|
|
class AttnDownBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
attention_head_dim: int = 1, |
|
output_scale_factor: float = 1.0, |
|
downsample_padding: int = 1, |
|
downsample_type: str = "conv", |
|
): |
|
super().__init__() |
|
resnets = [] |
|
attentions = [] |
|
self.downsample_type = downsample_type |
|
|
|
if attention_head_dim is None: |
|
logger.warn( |
|
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}." |
|
) |
|
attention_head_dim = out_channels |
|
|
|
for i in range(num_layers): |
|
in_channels = in_channels if i == 0 else out_channels |
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
attentions.append( |
|
Attention( |
|
out_channels, |
|
heads=out_channels // attention_head_dim, |
|
dim_head=attention_head_dim, |
|
rescale_output_factor=output_scale_factor, |
|
eps=resnet_eps, |
|
norm_num_groups=resnet_groups, |
|
residual_connection=True, |
|
bias=True, |
|
upcast_softmax=True, |
|
_from_deprecated_attn_block=True, |
|
) |
|
) |
|
|
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if downsample_type == "conv": |
|
self.downsamplers = nn.ModuleList( |
|
[ |
|
Downsample2D( |
|
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" |
|
) |
|
] |
|
) |
|
elif downsample_type == "resnet": |
|
self.downsamplers = nn.ModuleList( |
|
[ |
|
ResnetBlock2D( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
down=True, |
|
) |
|
] |
|
) |
|
else: |
|
self.downsamplers = None |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
temb: Optional[torch.FloatTensor] = None, |
|
upsample_size: Optional[int] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: |
|
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} |
|
|
|
lora_scale = cross_attention_kwargs.get("scale", 1.0) |
|
|
|
output_states = () |
|
|
|
for resnet, attn in zip(self.resnets, self.attentions): |
|
cross_attention_kwargs.update({"scale": lora_scale}) |
|
hidden_states = resnet(hidden_states, temb, scale=lora_scale) |
|
hidden_states = attn(hidden_states, **cross_attention_kwargs) |
|
output_states = output_states + (hidden_states,) |
|
|
|
if self.downsamplers is not None: |
|
for downsampler in self.downsamplers: |
|
if self.downsample_type == "resnet": |
|
hidden_states = downsampler(hidden_states, temb=temb, scale=lora_scale) |
|
else: |
|
hidden_states = downsampler(hidden_states, scale=lora_scale) |
|
|
|
output_states += (hidden_states,) |
|
|
|
return hidden_states, output_states |
|
|
|
|
|
class CrossAttnDownBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
transformer_layers_per_block: Union[int, Tuple[int]] = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
num_attention_heads: int = 1, |
|
cross_attention_dim: int = 1280, |
|
output_scale_factor: float = 1.0, |
|
downsample_padding: int = 1, |
|
add_downsample: bool = True, |
|
dual_cross_attention: bool = False, |
|
use_linear_projection: bool = False, |
|
only_cross_attention: bool = False, |
|
upcast_attention: bool = False, |
|
attention_type: str = "default", |
|
): |
|
super().__init__() |
|
resnets = [] |
|
attentions = [] |
|
|
|
self.has_cross_attention = True |
|
self.num_attention_heads = num_attention_heads |
|
if isinstance(transformer_layers_per_block, int): |
|
transformer_layers_per_block = [transformer_layers_per_block] * num_layers |
|
|
|
for i in range(num_layers): |
|
in_channels = in_channels if i == 0 else out_channels |
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
if not dual_cross_attention: |
|
attentions.append( |
|
Transformer2DModel( |
|
num_attention_heads, |
|
out_channels // num_attention_heads, |
|
in_channels=out_channels, |
|
num_layers=transformer_layers_per_block[i], |
|
cross_attention_dim=cross_attention_dim, |
|
norm_num_groups=resnet_groups, |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
attention_type=attention_type, |
|
) |
|
) |
|
else: |
|
attentions.append( |
|
DualTransformer2DModel( |
|
num_attention_heads, |
|
out_channels // num_attention_heads, |
|
in_channels=out_channels, |
|
num_layers=1, |
|
cross_attention_dim=cross_attention_dim, |
|
norm_num_groups=resnet_groups, |
|
) |
|
) |
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_downsample: |
|
self.downsamplers = nn.ModuleList( |
|
[ |
|
Downsample2D( |
|
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" |
|
) |
|
] |
|
) |
|
else: |
|
self.downsamplers = None |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
spatial_attn_inputs = [], |
|
temb: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
additional_residuals: Optional[torch.FloatTensor] = None, |
|
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: |
|
output_states = () |
|
|
|
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 |
|
|
|
blocks = list(zip(self.resnets, self.attentions)) |
|
|
|
for i, (resnet, attn) in enumerate(blocks): |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), |
|
hidden_states, |
|
temb, |
|
**ckpt_kwargs, |
|
) |
|
hidden_states, spatial_attn_inputs = attn( |
|
hidden_states, |
|
spatial_attn_inputs=spatial_attn_inputs, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
attention_mask=attention_mask, |
|
encoder_attention_mask=encoder_attention_mask, |
|
return_dict=False, |
|
) |
|
hidden_states = hidden_states[0] |
|
else: |
|
hidden_states = resnet(hidden_states, temb, scale=lora_scale) |
|
hidden_states, spatial_attn_inputs = attn( |
|
hidden_states, |
|
spatial_attn_inputs=spatial_attn_inputs, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
attention_mask=attention_mask, |
|
encoder_attention_mask=encoder_attention_mask, |
|
return_dict=False, |
|
) |
|
hidden_states = hidden_states[0] |
|
|
|
|
|
if i == len(blocks) - 1 and additional_residuals is not None: |
|
hidden_states = hidden_states + additional_residuals |
|
|
|
output_states = output_states + (hidden_states,) |
|
|
|
if self.downsamplers is not None: |
|
for downsampler in self.downsamplers: |
|
hidden_states = downsampler(hidden_states, scale=lora_scale) |
|
|
|
output_states = output_states + (hidden_states,) |
|
|
|
return hidden_states, output_states, spatial_attn_inputs |
|
|
|
|
|
class DownBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
output_scale_factor: float = 1.0, |
|
add_downsample: bool = True, |
|
downsample_padding: int = 1, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
|
|
for i in range(num_layers): |
|
in_channels = in_channels if i == 0 else out_channels |
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_downsample: |
|
self.downsamplers = nn.ModuleList( |
|
[ |
|
Downsample2D( |
|
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" |
|
) |
|
] |
|
) |
|
else: |
|
self.downsamplers = None |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0 |
|
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: |
|
output_states = () |
|
|
|
for resnet in self.resnets: |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
if is_torch_version(">=", "1.11.0"): |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False |
|
) |
|
else: |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), hidden_states, temb |
|
) |
|
else: |
|
hidden_states = resnet(hidden_states, temb, scale=scale) |
|
|
|
output_states = output_states + (hidden_states,) |
|
|
|
if self.downsamplers is not None: |
|
for downsampler in self.downsamplers: |
|
hidden_states = downsampler(hidden_states, scale=scale) |
|
|
|
output_states = output_states + (hidden_states,) |
|
|
|
return hidden_states, output_states |
|
|
|
|
|
class DownEncoderBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
output_scale_factor: float = 1.0, |
|
add_downsample: bool = True, |
|
downsample_padding: int = 1, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
|
|
for i in range(num_layers): |
|
in_channels = in_channels if i == 0 else out_channels |
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=None, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_downsample: |
|
self.downsamplers = nn.ModuleList( |
|
[ |
|
Downsample2D( |
|
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" |
|
) |
|
] |
|
) |
|
else: |
|
self.downsamplers = None |
|
|
|
def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor: |
|
for resnet in self.resnets: |
|
hidden_states = resnet(hidden_states, temb=None, scale=scale) |
|
|
|
if self.downsamplers is not None: |
|
for downsampler in self.downsamplers: |
|
hidden_states = downsampler(hidden_states, scale) |
|
|
|
return hidden_states |
|
|
|
|
|
class AttnDownEncoderBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
attention_head_dim: int = 1, |
|
output_scale_factor: float = 1.0, |
|
add_downsample: bool = True, |
|
downsample_padding: int = 1, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
attentions = [] |
|
|
|
if attention_head_dim is None: |
|
logger.warn( |
|
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}." |
|
) |
|
attention_head_dim = out_channels |
|
|
|
for i in range(num_layers): |
|
in_channels = in_channels if i == 0 else out_channels |
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=None, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
attentions.append( |
|
Attention( |
|
out_channels, |
|
heads=out_channels // attention_head_dim, |
|
dim_head=attention_head_dim, |
|
rescale_output_factor=output_scale_factor, |
|
eps=resnet_eps, |
|
norm_num_groups=resnet_groups, |
|
residual_connection=True, |
|
bias=True, |
|
upcast_softmax=True, |
|
_from_deprecated_attn_block=True, |
|
) |
|
) |
|
|
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_downsample: |
|
self.downsamplers = nn.ModuleList( |
|
[ |
|
Downsample2D( |
|
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" |
|
) |
|
] |
|
) |
|
else: |
|
self.downsamplers = None |
|
|
|
def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor: |
|
for resnet, attn in zip(self.resnets, self.attentions): |
|
hidden_states = resnet(hidden_states, temb=None, scale=scale) |
|
cross_attention_kwargs = {"scale": scale} |
|
hidden_states = attn(hidden_states, **cross_attention_kwargs) |
|
|
|
if self.downsamplers is not None: |
|
for downsampler in self.downsamplers: |
|
hidden_states = downsampler(hidden_states, scale) |
|
|
|
return hidden_states |
|
|
|
|
|
class AttnSkipDownBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_pre_norm: bool = True, |
|
attention_head_dim: int = 1, |
|
output_scale_factor: float = np.sqrt(2.0), |
|
add_downsample: bool = True, |
|
): |
|
super().__init__() |
|
self.attentions = nn.ModuleList([]) |
|
self.resnets = nn.ModuleList([]) |
|
|
|
if attention_head_dim is None: |
|
logger.warn( |
|
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}." |
|
) |
|
attention_head_dim = out_channels |
|
|
|
for i in range(num_layers): |
|
in_channels = in_channels if i == 0 else out_channels |
|
self.resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=min(in_channels // 4, 32), |
|
groups_out=min(out_channels // 4, 32), |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
self.attentions.append( |
|
Attention( |
|
out_channels, |
|
heads=out_channels // attention_head_dim, |
|
dim_head=attention_head_dim, |
|
rescale_output_factor=output_scale_factor, |
|
eps=resnet_eps, |
|
norm_num_groups=32, |
|
residual_connection=True, |
|
bias=True, |
|
upcast_softmax=True, |
|
_from_deprecated_attn_block=True, |
|
) |
|
) |
|
|
|
if add_downsample: |
|
self.resnet_down = ResnetBlock2D( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=min(out_channels // 4, 32), |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
use_in_shortcut=True, |
|
down=True, |
|
kernel="fir", |
|
) |
|
self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)]) |
|
self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1)) |
|
else: |
|
self.resnet_down = None |
|
self.downsamplers = None |
|
self.skip_conv = None |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
temb: Optional[torch.FloatTensor] = None, |
|
skip_sample: Optional[torch.FloatTensor] = None, |
|
scale: float = 1.0, |
|
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...], torch.FloatTensor]: |
|
output_states = () |
|
|
|
for resnet, attn in zip(self.resnets, self.attentions): |
|
hidden_states = resnet(hidden_states, temb, scale=scale) |
|
cross_attention_kwargs = {"scale": scale} |
|
hidden_states = attn(hidden_states, **cross_attention_kwargs) |
|
output_states += (hidden_states,) |
|
|
|
if self.downsamplers is not None: |
|
hidden_states = self.resnet_down(hidden_states, temb, scale=scale) |
|
for downsampler in self.downsamplers: |
|
skip_sample = downsampler(skip_sample) |
|
|
|
hidden_states = self.skip_conv(skip_sample) + hidden_states |
|
|
|
output_states += (hidden_states,) |
|
|
|
return hidden_states, output_states, skip_sample |
|
|
|
|
|
class SkipDownBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_pre_norm: bool = True, |
|
output_scale_factor: float = np.sqrt(2.0), |
|
add_downsample: bool = True, |
|
downsample_padding: int = 1, |
|
): |
|
super().__init__() |
|
self.resnets = nn.ModuleList([]) |
|
|
|
for i in range(num_layers): |
|
in_channels = in_channels if i == 0 else out_channels |
|
self.resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=min(in_channels // 4, 32), |
|
groups_out=min(out_channels // 4, 32), |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
|
|
if add_downsample: |
|
self.resnet_down = ResnetBlock2D( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=min(out_channels // 4, 32), |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
use_in_shortcut=True, |
|
down=True, |
|
kernel="fir", |
|
) |
|
self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)]) |
|
self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1)) |
|
else: |
|
self.resnet_down = None |
|
self.downsamplers = None |
|
self.skip_conv = None |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
temb: Optional[torch.FloatTensor] = None, |
|
skip_sample: Optional[torch.FloatTensor] = None, |
|
scale: float = 1.0, |
|
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...], torch.FloatTensor]: |
|
output_states = () |
|
|
|
for resnet in self.resnets: |
|
hidden_states = resnet(hidden_states, temb, scale) |
|
output_states += (hidden_states,) |
|
|
|
if self.downsamplers is not None: |
|
hidden_states = self.resnet_down(hidden_states, temb, scale) |
|
for downsampler in self.downsamplers: |
|
skip_sample = downsampler(skip_sample) |
|
|
|
hidden_states = self.skip_conv(skip_sample) + hidden_states |
|
|
|
output_states += (hidden_states,) |
|
|
|
return hidden_states, output_states, skip_sample |
|
|
|
|
|
class ResnetDownsampleBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
output_scale_factor: float = 1.0, |
|
add_downsample: bool = True, |
|
skip_time_act: bool = False, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
|
|
for i in range(num_layers): |
|
in_channels = in_channels if i == 0 else out_channels |
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
skip_time_act=skip_time_act, |
|
) |
|
) |
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_downsample: |
|
self.downsamplers = nn.ModuleList( |
|
[ |
|
ResnetBlock2D( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
skip_time_act=skip_time_act, |
|
down=True, |
|
) |
|
] |
|
) |
|
else: |
|
self.downsamplers = None |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0 |
|
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: |
|
output_states = () |
|
|
|
for resnet in self.resnets: |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
if is_torch_version(">=", "1.11.0"): |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False |
|
) |
|
else: |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), hidden_states, temb |
|
) |
|
else: |
|
hidden_states = resnet(hidden_states, temb, scale) |
|
|
|
output_states = output_states + (hidden_states,) |
|
|
|
if self.downsamplers is not None: |
|
for downsampler in self.downsamplers: |
|
hidden_states = downsampler(hidden_states, temb, scale) |
|
|
|
output_states = output_states + (hidden_states,) |
|
|
|
return hidden_states, output_states |
|
|
|
|
|
class SimpleCrossAttnDownBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
attention_head_dim: int = 1, |
|
cross_attention_dim: int = 1280, |
|
output_scale_factor: float = 1.0, |
|
add_downsample: bool = True, |
|
skip_time_act: bool = False, |
|
only_cross_attention: bool = False, |
|
cross_attention_norm: Optional[str] = None, |
|
): |
|
super().__init__() |
|
|
|
self.has_cross_attention = True |
|
|
|
resnets = [] |
|
attentions = [] |
|
|
|
self.attention_head_dim = attention_head_dim |
|
self.num_heads = out_channels // self.attention_head_dim |
|
|
|
for i in range(num_layers): |
|
in_channels = in_channels if i == 0 else out_channels |
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
skip_time_act=skip_time_act, |
|
) |
|
) |
|
|
|
processor = ( |
|
AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor() |
|
) |
|
|
|
attentions.append( |
|
Attention( |
|
query_dim=out_channels, |
|
cross_attention_dim=out_channels, |
|
heads=self.num_heads, |
|
dim_head=attention_head_dim, |
|
added_kv_proj_dim=cross_attention_dim, |
|
norm_num_groups=resnet_groups, |
|
bias=True, |
|
upcast_softmax=True, |
|
only_cross_attention=only_cross_attention, |
|
cross_attention_norm=cross_attention_norm, |
|
processor=processor, |
|
) |
|
) |
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_downsample: |
|
self.downsamplers = nn.ModuleList( |
|
[ |
|
ResnetBlock2D( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
skip_time_act=skip_time_act, |
|
down=True, |
|
) |
|
] |
|
) |
|
else: |
|
self.downsamplers = None |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
temb: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: |
|
output_states = () |
|
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} |
|
|
|
lora_scale = cross_attention_kwargs.get("scale", 1.0) |
|
|
|
if attention_mask is None: |
|
|
|
mask = None if encoder_hidden_states is None else encoder_attention_mask |
|
else: |
|
|
|
|
|
|
|
|
|
|
|
mask = attention_mask |
|
|
|
for resnet, attn in zip(self.resnets, self.attentions): |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) |
|
hidden_states = attn( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=mask, |
|
**cross_attention_kwargs, |
|
) |
|
else: |
|
hidden_states = resnet(hidden_states, temb, scale=lora_scale) |
|
|
|
hidden_states = attn( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=mask, |
|
**cross_attention_kwargs, |
|
) |
|
|
|
output_states = output_states + (hidden_states,) |
|
|
|
if self.downsamplers is not None: |
|
for downsampler in self.downsamplers: |
|
hidden_states = downsampler(hidden_states, temb, scale=lora_scale) |
|
|
|
output_states = output_states + (hidden_states,) |
|
|
|
return hidden_states, output_states |
|
|
|
|
|
class KDownBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 4, |
|
resnet_eps: float = 1e-5, |
|
resnet_act_fn: str = "gelu", |
|
resnet_group_size: int = 32, |
|
add_downsample: bool = False, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
|
|
for i in range(num_layers): |
|
in_channels = in_channels if i == 0 else out_channels |
|
groups = in_channels // resnet_group_size |
|
groups_out = out_channels // resnet_group_size |
|
|
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
dropout=dropout, |
|
temb_channels=temb_channels, |
|
groups=groups, |
|
groups_out=groups_out, |
|
eps=resnet_eps, |
|
non_linearity=resnet_act_fn, |
|
time_embedding_norm="ada_group", |
|
conv_shortcut_bias=False, |
|
) |
|
) |
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_downsample: |
|
|
|
self.downsamplers = nn.ModuleList([KDownsample2D()]) |
|
else: |
|
self.downsamplers = None |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0 |
|
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: |
|
output_states = () |
|
|
|
for resnet in self.resnets: |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
if is_torch_version(">=", "1.11.0"): |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False |
|
) |
|
else: |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), hidden_states, temb |
|
) |
|
else: |
|
hidden_states = resnet(hidden_states, temb, scale) |
|
|
|
output_states += (hidden_states,) |
|
|
|
if self.downsamplers is not None: |
|
for downsampler in self.downsamplers: |
|
hidden_states = downsampler(hidden_states) |
|
|
|
return hidden_states, output_states |
|
|
|
|
|
class KCrossAttnDownBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
cross_attention_dim: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 4, |
|
resnet_group_size: int = 32, |
|
add_downsample: bool = True, |
|
attention_head_dim: int = 64, |
|
add_self_attention: bool = False, |
|
resnet_eps: float = 1e-5, |
|
resnet_act_fn: str = "gelu", |
|
): |
|
super().__init__() |
|
resnets = [] |
|
attentions = [] |
|
|
|
self.has_cross_attention = True |
|
|
|
for i in range(num_layers): |
|
in_channels = in_channels if i == 0 else out_channels |
|
groups = in_channels // resnet_group_size |
|
groups_out = out_channels // resnet_group_size |
|
|
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
dropout=dropout, |
|
temb_channels=temb_channels, |
|
groups=groups, |
|
groups_out=groups_out, |
|
eps=resnet_eps, |
|
non_linearity=resnet_act_fn, |
|
time_embedding_norm="ada_group", |
|
conv_shortcut_bias=False, |
|
) |
|
) |
|
attentions.append( |
|
KAttentionBlock( |
|
out_channels, |
|
out_channels // attention_head_dim, |
|
attention_head_dim, |
|
cross_attention_dim=cross_attention_dim, |
|
temb_channels=temb_channels, |
|
attention_bias=True, |
|
add_self_attention=add_self_attention, |
|
cross_attention_norm="layer_norm", |
|
group_size=resnet_group_size, |
|
) |
|
) |
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
self.attentions = nn.ModuleList(attentions) |
|
|
|
if add_downsample: |
|
self.downsamplers = nn.ModuleList([KDownsample2D()]) |
|
else: |
|
self.downsamplers = None |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
temb: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: |
|
output_states = () |
|
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 |
|
|
|
for resnet, attn in zip(self.resnets, self.attentions): |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), |
|
hidden_states, |
|
temb, |
|
**ckpt_kwargs, |
|
) |
|
hidden_states = attn( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
emb=temb, |
|
attention_mask=attention_mask, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
encoder_attention_mask=encoder_attention_mask, |
|
) |
|
else: |
|
hidden_states = resnet(hidden_states, temb, scale=lora_scale) |
|
hidden_states = attn( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
emb=temb, |
|
attention_mask=attention_mask, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
encoder_attention_mask=encoder_attention_mask, |
|
) |
|
|
|
if self.downsamplers is None: |
|
output_states += (None,) |
|
else: |
|
output_states += (hidden_states,) |
|
|
|
if self.downsamplers is not None: |
|
for downsampler in self.downsamplers: |
|
hidden_states = downsampler(hidden_states) |
|
|
|
return hidden_states, output_states |
|
|
|
|
|
class AttnUpBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
prev_output_channel: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
resolution_idx: int = None, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
attention_head_dim: int = 1, |
|
output_scale_factor: float = 1.0, |
|
upsample_type: str = "conv", |
|
): |
|
super().__init__() |
|
resnets = [] |
|
attentions = [] |
|
|
|
self.upsample_type = upsample_type |
|
|
|
if attention_head_dim is None: |
|
logger.warn( |
|
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}." |
|
) |
|
attention_head_dim = out_channels |
|
|
|
for i in range(num_layers): |
|
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels |
|
resnet_in_channels = prev_output_channel if i == 0 else out_channels |
|
|
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=resnet_in_channels + res_skip_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
attentions.append( |
|
Attention( |
|
out_channels, |
|
heads=out_channels // attention_head_dim, |
|
dim_head=attention_head_dim, |
|
rescale_output_factor=output_scale_factor, |
|
eps=resnet_eps, |
|
norm_num_groups=resnet_groups, |
|
residual_connection=True, |
|
bias=True, |
|
upcast_softmax=True, |
|
_from_deprecated_attn_block=True, |
|
) |
|
) |
|
|
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if upsample_type == "conv": |
|
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) |
|
elif upsample_type == "resnet": |
|
self.upsamplers = nn.ModuleList( |
|
[ |
|
ResnetBlock2D( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
up=True, |
|
) |
|
] |
|
) |
|
else: |
|
self.upsamplers = None |
|
|
|
self.resolution_idx = resolution_idx |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], |
|
temb: Optional[torch.FloatTensor] = None, |
|
upsample_size: Optional[int] = None, |
|
scale: float = 1.0, |
|
) -> torch.FloatTensor: |
|
for resnet, attn in zip(self.resnets, self.attentions): |
|
|
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
|
|
hidden_states = resnet(hidden_states, temb, scale=scale) |
|
cross_attention_kwargs = {"scale": scale} |
|
hidden_states = attn(hidden_states, **cross_attention_kwargs) |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
if self.upsample_type == "resnet": |
|
hidden_states = upsampler(hidden_states, temb=temb, scale=scale) |
|
else: |
|
hidden_states = upsampler(hidden_states, scale=scale) |
|
|
|
return hidden_states |
|
|
|
|
|
class CrossAttnUpBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
prev_output_channel: int, |
|
temb_channels: int, |
|
resolution_idx: Optional[int] = None, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
transformer_layers_per_block: Union[int, Tuple[int]] = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
num_attention_heads: int = 1, |
|
cross_attention_dim: int = 1280, |
|
output_scale_factor: float = 1.0, |
|
add_upsample: bool = True, |
|
dual_cross_attention: bool = False, |
|
use_linear_projection: bool = False, |
|
only_cross_attention: bool = False, |
|
upcast_attention: bool = False, |
|
attention_type: str = "default", |
|
): |
|
super().__init__() |
|
resnets = [] |
|
attentions = [] |
|
|
|
self.has_cross_attention = True |
|
self.num_attention_heads = num_attention_heads |
|
|
|
if isinstance(transformer_layers_per_block, int): |
|
transformer_layers_per_block = [transformer_layers_per_block] * num_layers |
|
|
|
for i in range(num_layers): |
|
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels |
|
resnet_in_channels = prev_output_channel if i == 0 else out_channels |
|
|
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=resnet_in_channels + res_skip_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
if not dual_cross_attention: |
|
attentions.append( |
|
Transformer2DModel( |
|
num_attention_heads, |
|
out_channels // num_attention_heads, |
|
in_channels=out_channels, |
|
num_layers=transformer_layers_per_block[i], |
|
cross_attention_dim=cross_attention_dim, |
|
norm_num_groups=resnet_groups, |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
attention_type=attention_type, |
|
) |
|
) |
|
else: |
|
attentions.append( |
|
DualTransformer2DModel( |
|
num_attention_heads, |
|
out_channels // num_attention_heads, |
|
in_channels=out_channels, |
|
num_layers=1, |
|
cross_attention_dim=cross_attention_dim, |
|
norm_num_groups=resnet_groups, |
|
) |
|
) |
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_upsample: |
|
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) |
|
else: |
|
self.upsamplers = None |
|
|
|
self.gradient_checkpointing = False |
|
self.resolution_idx = resolution_idx |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], |
|
spatial_attn_inputs = [], |
|
temb: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
upsample_size: Optional[int] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
) -> torch.FloatTensor: |
|
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 |
|
is_freeu_enabled = ( |
|
getattr(self, "s1", None) |
|
and getattr(self, "s2", None) |
|
and getattr(self, "b1", None) |
|
and getattr(self, "b2", None) |
|
) |
|
|
|
for resnet, attn in zip(self.resnets, self.attentions): |
|
|
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
|
|
|
|
if is_freeu_enabled: |
|
hidden_states, res_hidden_states = apply_freeu( |
|
self.resolution_idx, |
|
hidden_states, |
|
res_hidden_states, |
|
s1=self.s1, |
|
s2=self.s2, |
|
b1=self.b1, |
|
b2=self.b2, |
|
) |
|
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
|
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), |
|
hidden_states, |
|
temb, |
|
**ckpt_kwargs, |
|
) |
|
hidden_states, spatial_attn_inputs = attn( |
|
hidden_states, |
|
spatial_attn_inputs=spatial_attn_inputs, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
attention_mask=attention_mask, |
|
encoder_attention_mask=encoder_attention_mask, |
|
return_dict=False, |
|
) |
|
hidden_states = hidden_states[0] |
|
else: |
|
hidden_states = resnet(hidden_states, temb, scale=lora_scale) |
|
hidden_states, spatial_attn_inputs = attn( |
|
hidden_states, |
|
spatial_attn_inputs=spatial_attn_inputs, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
attention_mask=attention_mask, |
|
encoder_attention_mask=encoder_attention_mask, |
|
return_dict=False, |
|
) |
|
hidden_states = hidden_states[0] |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states, upsample_size, scale=lora_scale) |
|
|
|
return hidden_states, spatial_attn_inputs |
|
|
|
|
|
class UpBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
prev_output_channel: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
resolution_idx: Optional[int] = None, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
output_scale_factor: float = 1.0, |
|
add_upsample: bool = True, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
|
|
for i in range(num_layers): |
|
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels |
|
resnet_in_channels = prev_output_channel if i == 0 else out_channels |
|
|
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=resnet_in_channels + res_skip_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_upsample: |
|
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) |
|
else: |
|
self.upsamplers = None |
|
|
|
self.gradient_checkpointing = False |
|
self.resolution_idx = resolution_idx |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], |
|
temb: Optional[torch.FloatTensor] = None, |
|
upsample_size: Optional[int] = None, |
|
scale: float = 1.0, |
|
) -> torch.FloatTensor: |
|
is_freeu_enabled = ( |
|
getattr(self, "s1", None) |
|
and getattr(self, "s2", None) |
|
and getattr(self, "b1", None) |
|
and getattr(self, "b2", None) |
|
) |
|
|
|
for resnet in self.resnets: |
|
|
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
|
|
|
|
if is_freeu_enabled: |
|
hidden_states, res_hidden_states = apply_freeu( |
|
self.resolution_idx, |
|
hidden_states, |
|
res_hidden_states, |
|
s1=self.s1, |
|
s2=self.s2, |
|
b1=self.b1, |
|
b2=self.b2, |
|
) |
|
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
|
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
if is_torch_version(">=", "1.11.0"): |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False |
|
) |
|
else: |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), hidden_states, temb |
|
) |
|
else: |
|
hidden_states = resnet(hidden_states, temb, scale=scale) |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states, upsample_size, scale=scale) |
|
|
|
return hidden_states |
|
|
|
|
|
class UpDecoderBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
resolution_idx: Optional[int] = None, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
output_scale_factor: float = 1.0, |
|
add_upsample: bool = True, |
|
temb_channels: Optional[int] = None, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
|
|
for i in range(num_layers): |
|
input_channels = in_channels if i == 0 else out_channels |
|
|
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=input_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_upsample: |
|
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) |
|
else: |
|
self.upsamplers = None |
|
|
|
self.resolution_idx = resolution_idx |
|
|
|
def forward( |
|
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0 |
|
) -> torch.FloatTensor: |
|
for resnet in self.resnets: |
|
hidden_states = resnet(hidden_states, temb=temb, scale=scale) |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class AttnUpDecoderBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
resolution_idx: Optional[int] = None, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
attention_head_dim: int = 1, |
|
output_scale_factor: float = 1.0, |
|
add_upsample: bool = True, |
|
temb_channels: Optional[int] = None, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
attentions = [] |
|
|
|
if attention_head_dim is None: |
|
logger.warn( |
|
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}." |
|
) |
|
attention_head_dim = out_channels |
|
|
|
for i in range(num_layers): |
|
input_channels = in_channels if i == 0 else out_channels |
|
|
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=input_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
attentions.append( |
|
Attention( |
|
out_channels, |
|
heads=out_channels // attention_head_dim, |
|
dim_head=attention_head_dim, |
|
rescale_output_factor=output_scale_factor, |
|
eps=resnet_eps, |
|
norm_num_groups=resnet_groups if resnet_time_scale_shift != "spatial" else None, |
|
spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None, |
|
residual_connection=True, |
|
bias=True, |
|
upcast_softmax=True, |
|
_from_deprecated_attn_block=True, |
|
) |
|
) |
|
|
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_upsample: |
|
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) |
|
else: |
|
self.upsamplers = None |
|
|
|
self.resolution_idx = resolution_idx |
|
|
|
def forward( |
|
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0 |
|
) -> torch.FloatTensor: |
|
for resnet, attn in zip(self.resnets, self.attentions): |
|
hidden_states = resnet(hidden_states, temb=temb, scale=scale) |
|
cross_attention_kwargs = {"scale": scale} |
|
hidden_states = attn(hidden_states, temb=temb, **cross_attention_kwargs) |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states, scale=scale) |
|
|
|
return hidden_states |
|
|
|
|
|
class AttnSkipUpBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
prev_output_channel: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
resolution_idx: Optional[int] = None, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_pre_norm: bool = True, |
|
attention_head_dim: int = 1, |
|
output_scale_factor: float = np.sqrt(2.0), |
|
add_upsample: bool = True, |
|
): |
|
super().__init__() |
|
self.attentions = nn.ModuleList([]) |
|
self.resnets = nn.ModuleList([]) |
|
|
|
for i in range(num_layers): |
|
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels |
|
resnet_in_channels = prev_output_channel if i == 0 else out_channels |
|
|
|
self.resnets.append( |
|
ResnetBlock2D( |
|
in_channels=resnet_in_channels + res_skip_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=min(resnet_in_channels + res_skip_channels // 4, 32), |
|
groups_out=min(out_channels // 4, 32), |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
|
|
if attention_head_dim is None: |
|
logger.warn( |
|
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}." |
|
) |
|
attention_head_dim = out_channels |
|
|
|
self.attentions.append( |
|
Attention( |
|
out_channels, |
|
heads=out_channels // attention_head_dim, |
|
dim_head=attention_head_dim, |
|
rescale_output_factor=output_scale_factor, |
|
eps=resnet_eps, |
|
norm_num_groups=32, |
|
residual_connection=True, |
|
bias=True, |
|
upcast_softmax=True, |
|
_from_deprecated_attn_block=True, |
|
) |
|
) |
|
|
|
self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels) |
|
if add_upsample: |
|
self.resnet_up = ResnetBlock2D( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=min(out_channels // 4, 32), |
|
groups_out=min(out_channels // 4, 32), |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
use_in_shortcut=True, |
|
up=True, |
|
kernel="fir", |
|
) |
|
self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) |
|
self.skip_norm = torch.nn.GroupNorm( |
|
num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True |
|
) |
|
self.act = nn.SiLU() |
|
else: |
|
self.resnet_up = None |
|
self.skip_conv = None |
|
self.skip_norm = None |
|
self.act = None |
|
|
|
self.resolution_idx = resolution_idx |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], |
|
temb: Optional[torch.FloatTensor] = None, |
|
skip_sample=None, |
|
scale: float = 1.0, |
|
) -> Tuple[torch.FloatTensor, torch.FloatTensor]: |
|
for resnet in self.resnets: |
|
|
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
|
|
hidden_states = resnet(hidden_states, temb, scale=scale) |
|
|
|
cross_attention_kwargs = {"scale": scale} |
|
hidden_states = self.attentions[0](hidden_states, **cross_attention_kwargs) |
|
|
|
if skip_sample is not None: |
|
skip_sample = self.upsampler(skip_sample) |
|
else: |
|
skip_sample = 0 |
|
|
|
if self.resnet_up is not None: |
|
skip_sample_states = self.skip_norm(hidden_states) |
|
skip_sample_states = self.act(skip_sample_states) |
|
skip_sample_states = self.skip_conv(skip_sample_states) |
|
|
|
skip_sample = skip_sample + skip_sample_states |
|
|
|
hidden_states = self.resnet_up(hidden_states, temb, scale=scale) |
|
|
|
return hidden_states, skip_sample |
|
|
|
|
|
class SkipUpBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
prev_output_channel: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
resolution_idx: Optional[int] = None, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_pre_norm: bool = True, |
|
output_scale_factor: float = np.sqrt(2.0), |
|
add_upsample: bool = True, |
|
upsample_padding: int = 1, |
|
): |
|
super().__init__() |
|
self.resnets = nn.ModuleList([]) |
|
|
|
for i in range(num_layers): |
|
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels |
|
resnet_in_channels = prev_output_channel if i == 0 else out_channels |
|
|
|
self.resnets.append( |
|
ResnetBlock2D( |
|
in_channels=resnet_in_channels + res_skip_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=min((resnet_in_channels + res_skip_channels) // 4, 32), |
|
groups_out=min(out_channels // 4, 32), |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
|
|
self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels) |
|
if add_upsample: |
|
self.resnet_up = ResnetBlock2D( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=min(out_channels // 4, 32), |
|
groups_out=min(out_channels // 4, 32), |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
use_in_shortcut=True, |
|
up=True, |
|
kernel="fir", |
|
) |
|
self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) |
|
self.skip_norm = torch.nn.GroupNorm( |
|
num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True |
|
) |
|
self.act = nn.SiLU() |
|
else: |
|
self.resnet_up = None |
|
self.skip_conv = None |
|
self.skip_norm = None |
|
self.act = None |
|
|
|
self.resolution_idx = resolution_idx |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], |
|
temb: Optional[torch.FloatTensor] = None, |
|
skip_sample=None, |
|
scale: float = 1.0, |
|
) -> Tuple[torch.FloatTensor, torch.FloatTensor]: |
|
for resnet in self.resnets: |
|
|
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
|
|
hidden_states = resnet(hidden_states, temb, scale=scale) |
|
|
|
if skip_sample is not None: |
|
skip_sample = self.upsampler(skip_sample) |
|
else: |
|
skip_sample = 0 |
|
|
|
if self.resnet_up is not None: |
|
skip_sample_states = self.skip_norm(hidden_states) |
|
skip_sample_states = self.act(skip_sample_states) |
|
skip_sample_states = self.skip_conv(skip_sample_states) |
|
|
|
skip_sample = skip_sample + skip_sample_states |
|
|
|
hidden_states = self.resnet_up(hidden_states, temb, scale=scale) |
|
|
|
return hidden_states, skip_sample |
|
|
|
|
|
class ResnetUpsampleBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
prev_output_channel: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
resolution_idx: Optional[int] = None, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
output_scale_factor: float = 1.0, |
|
add_upsample: bool = True, |
|
skip_time_act: bool = False, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
|
|
for i in range(num_layers): |
|
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels |
|
resnet_in_channels = prev_output_channel if i == 0 else out_channels |
|
|
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=resnet_in_channels + res_skip_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
skip_time_act=skip_time_act, |
|
) |
|
) |
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_upsample: |
|
self.upsamplers = nn.ModuleList( |
|
[ |
|
ResnetBlock2D( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
skip_time_act=skip_time_act, |
|
up=True, |
|
) |
|
] |
|
) |
|
else: |
|
self.upsamplers = None |
|
|
|
self.gradient_checkpointing = False |
|
self.resolution_idx = resolution_idx |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], |
|
temb: Optional[torch.FloatTensor] = None, |
|
upsample_size: Optional[int] = None, |
|
scale: float = 1.0, |
|
) -> torch.FloatTensor: |
|
for resnet in self.resnets: |
|
|
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
|
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
if is_torch_version(">=", "1.11.0"): |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False |
|
) |
|
else: |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), hidden_states, temb |
|
) |
|
else: |
|
hidden_states = resnet(hidden_states, temb, scale=scale) |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states, temb, scale=scale) |
|
|
|
return hidden_states |
|
|
|
|
|
class SimpleCrossAttnUpBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
prev_output_channel: int, |
|
temb_channels: int, |
|
resolution_idx: Optional[int] = None, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
attention_head_dim: int = 1, |
|
cross_attention_dim: int = 1280, |
|
output_scale_factor: float = 1.0, |
|
add_upsample: bool = True, |
|
skip_time_act: bool = False, |
|
only_cross_attention: bool = False, |
|
cross_attention_norm: Optional[str] = None, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
attentions = [] |
|
|
|
self.has_cross_attention = True |
|
self.attention_head_dim = attention_head_dim |
|
|
|
self.num_heads = out_channels // self.attention_head_dim |
|
|
|
for i in range(num_layers): |
|
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels |
|
resnet_in_channels = prev_output_channel if i == 0 else out_channels |
|
|
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=resnet_in_channels + res_skip_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
skip_time_act=skip_time_act, |
|
) |
|
) |
|
|
|
processor = ( |
|
AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor() |
|
) |
|
|
|
attentions.append( |
|
Attention( |
|
query_dim=out_channels, |
|
cross_attention_dim=out_channels, |
|
heads=self.num_heads, |
|
dim_head=self.attention_head_dim, |
|
added_kv_proj_dim=cross_attention_dim, |
|
norm_num_groups=resnet_groups, |
|
bias=True, |
|
upcast_softmax=True, |
|
only_cross_attention=only_cross_attention, |
|
cross_attention_norm=cross_attention_norm, |
|
processor=processor, |
|
) |
|
) |
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_upsample: |
|
self.upsamplers = nn.ModuleList( |
|
[ |
|
ResnetBlock2D( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
skip_time_act=skip_time_act, |
|
up=True, |
|
) |
|
] |
|
) |
|
else: |
|
self.upsamplers = None |
|
|
|
self.gradient_checkpointing = False |
|
self.resolution_idx = resolution_idx |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], |
|
temb: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
upsample_size: Optional[int] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
) -> torch.FloatTensor: |
|
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} |
|
|
|
lora_scale = cross_attention_kwargs.get("scale", 1.0) |
|
if attention_mask is None: |
|
|
|
mask = None if encoder_hidden_states is None else encoder_attention_mask |
|
else: |
|
|
|
|
|
|
|
|
|
|
|
mask = attention_mask |
|
|
|
for resnet, attn in zip(self.resnets, self.attentions): |
|
|
|
|
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
|
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) |
|
hidden_states = attn( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=mask, |
|
**cross_attention_kwargs, |
|
) |
|
else: |
|
hidden_states = resnet(hidden_states, temb, scale=lora_scale) |
|
|
|
hidden_states = attn( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=mask, |
|
**cross_attention_kwargs, |
|
) |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states, temb, scale=lora_scale) |
|
|
|
return hidden_states |
|
|
|
|
|
class KUpBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
resolution_idx: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 5, |
|
resnet_eps: float = 1e-5, |
|
resnet_act_fn: str = "gelu", |
|
resnet_group_size: Optional[int] = 32, |
|
add_upsample: bool = True, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
k_in_channels = 2 * out_channels |
|
k_out_channels = in_channels |
|
num_layers = num_layers - 1 |
|
|
|
for i in range(num_layers): |
|
in_channels = k_in_channels if i == 0 else out_channels |
|
groups = in_channels // resnet_group_size |
|
groups_out = out_channels // resnet_group_size |
|
|
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=k_out_channels if (i == num_layers - 1) else out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=groups, |
|
groups_out=groups_out, |
|
dropout=dropout, |
|
non_linearity=resnet_act_fn, |
|
time_embedding_norm="ada_group", |
|
conv_shortcut_bias=False, |
|
) |
|
) |
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_upsample: |
|
self.upsamplers = nn.ModuleList([KUpsample2D()]) |
|
else: |
|
self.upsamplers = None |
|
|
|
self.gradient_checkpointing = False |
|
self.resolution_idx = resolution_idx |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], |
|
temb: Optional[torch.FloatTensor] = None, |
|
upsample_size: Optional[int] = None, |
|
scale: float = 1.0, |
|
) -> torch.FloatTensor: |
|
res_hidden_states_tuple = res_hidden_states_tuple[-1] |
|
if res_hidden_states_tuple is not None: |
|
hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1) |
|
|
|
for resnet in self.resnets: |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
if is_torch_version(">=", "1.11.0"): |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False |
|
) |
|
else: |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), hidden_states, temb |
|
) |
|
else: |
|
hidden_states = resnet(hidden_states, temb, scale=scale) |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class KCrossAttnUpBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
resolution_idx: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 4, |
|
resnet_eps: float = 1e-5, |
|
resnet_act_fn: str = "gelu", |
|
resnet_group_size: int = 32, |
|
attention_head_dim: int = 1, |
|
cross_attention_dim: int = 768, |
|
add_upsample: bool = True, |
|
upcast_attention: bool = False, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
attentions = [] |
|
|
|
is_first_block = in_channels == out_channels == temb_channels |
|
is_middle_block = in_channels != out_channels |
|
add_self_attention = True if is_first_block else False |
|
|
|
self.has_cross_attention = True |
|
self.attention_head_dim = attention_head_dim |
|
|
|
|
|
k_in_channels = out_channels if is_first_block else 2 * out_channels |
|
k_out_channels = in_channels |
|
|
|
num_layers = num_layers - 1 |
|
|
|
for i in range(num_layers): |
|
in_channels = k_in_channels if i == 0 else out_channels |
|
groups = in_channels // resnet_group_size |
|
groups_out = out_channels // resnet_group_size |
|
|
|
if is_middle_block and (i == num_layers - 1): |
|
conv_2d_out_channels = k_out_channels |
|
else: |
|
conv_2d_out_channels = None |
|
|
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
conv_2d_out_channels=conv_2d_out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=groups, |
|
groups_out=groups_out, |
|
dropout=dropout, |
|
non_linearity=resnet_act_fn, |
|
time_embedding_norm="ada_group", |
|
conv_shortcut_bias=False, |
|
) |
|
) |
|
attentions.append( |
|
KAttentionBlock( |
|
k_out_channels if (i == num_layers - 1) else out_channels, |
|
k_out_channels // attention_head_dim |
|
if (i == num_layers - 1) |
|
else out_channels // attention_head_dim, |
|
attention_head_dim, |
|
cross_attention_dim=cross_attention_dim, |
|
temb_channels=temb_channels, |
|
attention_bias=True, |
|
add_self_attention=add_self_attention, |
|
cross_attention_norm="layer_norm", |
|
upcast_attention=upcast_attention, |
|
) |
|
) |
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
self.attentions = nn.ModuleList(attentions) |
|
|
|
if add_upsample: |
|
self.upsamplers = nn.ModuleList([KUpsample2D()]) |
|
else: |
|
self.upsamplers = None |
|
|
|
self.gradient_checkpointing = False |
|
self.resolution_idx = resolution_idx |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], |
|
temb: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
upsample_size: Optional[int] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
) -> torch.FloatTensor: |
|
res_hidden_states_tuple = res_hidden_states_tuple[-1] |
|
if res_hidden_states_tuple is not None: |
|
hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1) |
|
|
|
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 |
|
for resnet, attn in zip(self.resnets, self.attentions): |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), |
|
hidden_states, |
|
temb, |
|
**ckpt_kwargs, |
|
) |
|
hidden_states = attn( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
emb=temb, |
|
attention_mask=attention_mask, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
encoder_attention_mask=encoder_attention_mask, |
|
) |
|
else: |
|
hidden_states = resnet(hidden_states, temb, scale=lora_scale) |
|
hidden_states = attn( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
emb=temb, |
|
attention_mask=attention_mask, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
encoder_attention_mask=encoder_attention_mask, |
|
) |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
|
|
class KAttentionBlock(nn.Module): |
|
r""" |
|
A basic Transformer block. |
|
|
|
Parameters: |
|
dim (`int`): The number of channels in the input and output. |
|
num_attention_heads (`int`): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`): The number of channels in each head. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. |
|
attention_bias (`bool`, *optional*, defaults to `False`): |
|
Configure if the attention layers should contain a bias parameter. |
|
upcast_attention (`bool`, *optional*, defaults to `False`): |
|
Set to `True` to upcast the attention computation to `float32`. |
|
temb_channels (`int`, *optional*, defaults to 768): |
|
The number of channels in the token embedding. |
|
add_self_attention (`bool`, *optional*, defaults to `False`): |
|
Set to `True` to add self-attention to the block. |
|
cross_attention_norm (`str`, *optional*, defaults to `None`): |
|
The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`. |
|
group_size (`int`, *optional*, defaults to 32): |
|
The number of groups to separate the channels into for group normalization. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_attention_heads: int, |
|
attention_head_dim: int, |
|
dropout: float = 0.0, |
|
cross_attention_dim: Optional[int] = None, |
|
attention_bias: bool = False, |
|
upcast_attention: bool = False, |
|
temb_channels: int = 768, |
|
add_self_attention: bool = False, |
|
cross_attention_norm: Optional[str] = None, |
|
group_size: int = 32, |
|
): |
|
super().__init__() |
|
self.add_self_attention = add_self_attention |
|
|
|
|
|
if add_self_attention: |
|
self.norm1 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size)) |
|
self.attn1 = Attention( |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
cross_attention_dim=None, |
|
cross_attention_norm=None, |
|
) |
|
|
|
|
|
self.norm2 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size)) |
|
self.attn2 = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=cross_attention_dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
cross_attention_norm=cross_attention_norm, |
|
) |
|
|
|
def _to_3d(self, hidden_states: torch.FloatTensor, height: int, weight: int) -> torch.FloatTensor: |
|
return hidden_states.permute(0, 2, 3, 1).reshape(hidden_states.shape[0], height * weight, -1) |
|
|
|
def _to_4d(self, hidden_states: torch.FloatTensor, height: int, weight: int) -> torch.FloatTensor: |
|
return hidden_states.permute(0, 2, 1).reshape(hidden_states.shape[0], -1, height, weight) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
|
|
|
|
emb: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
) -> torch.FloatTensor: |
|
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} |
|
|
|
|
|
if self.add_self_attention: |
|
norm_hidden_states = self.norm1(hidden_states, emb) |
|
|
|
height, weight = norm_hidden_states.shape[2:] |
|
norm_hidden_states = self._to_3d(norm_hidden_states, height, weight) |
|
|
|
attn_output = self.attn1( |
|
norm_hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
attn_output = self._to_4d(attn_output, height, weight) |
|
|
|
hidden_states = attn_output + hidden_states |
|
|
|
|
|
norm_hidden_states = self.norm2(hidden_states, emb) |
|
|
|
height, weight = norm_hidden_states.shape[2:] |
|
norm_hidden_states = self._to_3d(norm_hidden_states, height, weight) |
|
attn_output = self.attn2( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask if encoder_hidden_states is None else encoder_attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
attn_output = self._to_4d(attn_output, height, weight) |
|
|
|
hidden_states = attn_output + hidden_states |
|
|
|
return hidden_states |
|
|