File size: 5,232 Bytes
28ff501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcae6d4
28ff501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fastai.vision.all import *\n",
    "import gradio as gr\n",
    "import requests\n",
    "import base64\n",
    "from bs4 import BeautifulSoup\n",
    "import os"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load the trained model\n",
    "learn = load_learner('nsfw_model.pkl')\n",
    "labels = learn.dls.vocab\n",
    "\n",
    "def analyze(url):\n",
    "    \"\"\"Analyzer function that classifies the images found at the given URL\"\"\"\n",
    "    \n",
    "    # Make sure URL starts with http or https\n",
    "    # TODO: confirm that the url points to a web page, and not some resource.\n",
    "    # Regex could be useful here\n",
    "    if not url.startswith(('http://','https://')):\n",
    "        url = 'http://'+url\n",
    "    \n",
    "    safety = 'safe' # our return variable\n",
    "\n",
    "    # Extract html and all img tags\n",
    "    html = requests.get(url)\n",
    "    soup = BeautifulSoup(html.text, \"html.parser\")\n",
    "    img_elements = soup.find_all(\"img\")\n",
    "\n",
    "    # Save all src urls that we can clearly tell are img urls.\n",
    "    # A better approach would be to use regex here\n",
    "    srcs = []\n",
    "    for img in img_elements:\n",
    "        for v in img.attrs.values():\n",
    "            if isinstance(v, str):\n",
    "                if v.lower().endswith(('jpg', 'png', 'gif', 'jpeg')):\n",
    "                    srcs.append(v)\n",
    "    \n",
    "    # Get the images from the urls and classify\n",
    "    # If there is a single unsafe image, report it.\n",
    "    for src_url in srcs:\n",
    "        try:\n",
    "            img_data = requests.get(src_url).content\n",
    "            temp = 'temp.' + src_url.lower().split('.')[-1]\n",
    "            with open(temp, 'wb') as handler:\n",
    "                handler.write(img_data)\n",
    "            is_nsfw,_,probs = learn.predict(PILImage.create(temp))\n",
    "            os.remove(temp) \n",
    "            if is_nsfw == \"unsafe_searches\":\n",
    "                safety = 'NOT safe'\n",
    "                return safety\n",
    "        except Exception as e:\n",
    "            pass\n",
    "    return safety"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running on local URL:  http://127.0.0.1:7867\n",
      "\n",
      "To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7867/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "(<gradio.routes.App at 0x7f0da61cb1f0>, 'http://127.0.0.1:7867/', None)"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "title = \"Website Safety Analyzer\"\n",
    "description = \"**The internet is not safe for children**. Even if we know the 'bad' sites, social media is hard to regulate.  \\n\"+\\\n",
    "                \"This is step one in an attempt to solve that. An image classifier that audits every image at a URL.  \\n\"+\\\n",
    "                \"In this iteration, I classify sites with sexually explicit content as **'NOT safe'**.  \\n\\n\"+\\\n",
    "                \"There is a long way to go with NLP for profanity, cyber-bullying, as well as CV for violence, substance abuse, etc.  \\n\"+\\\n",
    "                \"Another step will be to convert this into a browser extension/add-on.  \\n\"+\\\n",
    "                \"I welcome any help on this. 🙂\"\n",
    "examples = ['porhub.com', 'cnn.com', 'xvideos.com', 'www.pinterest.com']\n",
    "enable_queue=True\n",
    "\n",
    "iface = gr.Interface(\n",
    "    fn=analyze, \n",
    "    inputs=\"text\", \n",
    "    outputs=\"text\",\n",
    "    title=title,\n",
    "    description=description,\n",
    "    examples=examples,\n",
    ")\n",
    "iface.launch(enable_queue=enable_queue)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.6"
  },
  "vscode": {
   "interpreter": {
    "hash": "ed0e91aaffcefde6eb9bcd4f55fe7652d77471dc031ce772257aa5eb4a54e8f2"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}