File size: 4,214 Bytes
d358e26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import torch
import torch.nn as nn
import torch.nn.functional as F

from models.estimator import Decoder

# copied from https://github.com/jaywalnut310/vits/blob/main/commons.py#L121
def sequence_mask(length: torch.Tensor, max_length: int = None) -> torch.Tensor:
    if max_length is None:
        max_length = length.max()
    x = torch.arange(max_length, dtype=length.dtype, device=length.device)
    return x.unsqueeze(0) < length.unsqueeze(1)

# modified from https://github.com/shivammehta25/Matcha-TTS/blob/main/matcha/models/components/flow_matching.py
class CFMDecoder(torch.nn.Module):
    def __init__(self, hidden_channels, out_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, gin_channels):
        super().__init__()
        self.hidden_channels = hidden_channels
        self.out_channels = out_channels
        self.filter_channels = filter_channels
        self.gin_channels = gin_channels
        self.sigma_min = 1e-4

        self.estimator = Decoder(hidden_channels, out_channels, filter_channels, p_dropout, n_layers, n_heads, kernel_size, gin_channels)

    @torch.inference_mode()
    def forward(self, mu, mask, n_timesteps, temperature=1.0, c=None):
        """Forward diffusion

        Args:
            mu (torch.Tensor): output of encoder
                shape: (batch_size, n_feats, mel_timesteps)
            mask (torch.Tensor): output_mask
                shape: (batch_size, 1, mel_timesteps)
            n_timesteps (int): number of diffusion steps
            temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
            c (torch.Tensor, optional): shape: (batch_size, gin_channels)

        Returns:
            sample: generated mel-spectrogram
                shape: (batch_size, n_feats, mel_timesteps)
        """
        z = torch.randn_like(mu) * temperature
        t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
        return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, c=c)

    def solve_euler(self, x, t_span, mu, mask, c):
        """
        Fixed euler solver for ODEs.
        Args:
            x (torch.Tensor): random noise
            t_span (torch.Tensor): n_timesteps interpolated
                shape: (n_timesteps + 1,)
            mu (torch.Tensor): output of encoder
                shape: (batch_size, n_feats, mel_timesteps)
            mask (torch.Tensor): output_mask
                shape: (batch_size, 1, mel_timesteps)
            c (torch.Tensor, optional): speaker condition.
                shape: (batch_size, gin_channels)
        """
        t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]

        # I am storing this because I can later plot it by putting a debugger here and saving it to a file
        # Or in future might add like a return_all_steps flag
        sol = []

        for step in range(1, len(t_span)):
            dphi_dt = self.estimator(x, mask, mu, t, c)

            x = x + dt * dphi_dt
            t = t + dt
            sol.append(x)
            if step < len(t_span) - 1:
                dt = t_span[step + 1] - t

        return sol[-1]

    def compute_loss(self, x1, mask, mu, c):
        """Computes diffusion loss

        Args:
            x1 (torch.Tensor): Target
                shape: (batch_size, n_feats, mel_timesteps)
            mask (torch.Tensor): target mask
                shape: (batch_size, 1, mel_timesteps)
            mu (torch.Tensor): output of encoder
                shape: (batch_size, n_feats, mel_timesteps)
            c (torch.Tensor, optional): speaker condition.

        Returns:
            loss: conditional flow matching loss
            y: conditional flow
                shape: (batch_size, n_feats, mel_timesteps)
        """
        b, _, t = mu.shape

        # random timestep
        t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype)
        # sample noise p(x_0)
        z = torch.randn_like(x1)

        y = (1 - (1 - self.sigma_min) * t) * z + t * x1
        u = x1 - (1 - self.sigma_min) * z

        loss = F.mse_loss(self.estimator(y, mask, mu, t.squeeze(), c), u, reduction="sum") / (
            torch.sum(mask) * u.shape[1]
        )
        return loss, y