Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
# modified from https://github.com/jaywalnut310/vits/blob/main/models.py#L98 | |
class DurationPredictor(nn.Module): | |
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0): | |
super().__init__() | |
self.in_channels = in_channels | |
self.filter_channels = filter_channels | |
self.kernel_size = kernel_size | |
self.p_dropout = p_dropout | |
self.gin_channels = gin_channels | |
self.drop = nn.Dropout(p_dropout) | |
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2) | |
self.norm_1 = nn.LayerNorm(filter_channels) | |
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2) | |
self.norm_2 = nn.LayerNorm(filter_channels) | |
self.proj = nn.Conv1d(filter_channels, 1, 1) | |
self.cond = nn.Conv1d(gin_channels, in_channels, 1) | |
def forward(self, x, x_mask, g): | |
x = x.detach() | |
x = x + self.cond(g.unsqueeze(2).detach()) | |
x = self.conv_1(x * x_mask) | |
x = torch.relu(x) | |
x = self.norm_1(x.transpose(1,2)).transpose(1,2) | |
x = self.drop(x) | |
x = self.conv_2(x * x_mask) | |
x = torch.relu(x) | |
x = self.norm_2(x.transpose(1,2)).transpose(1,2) | |
x = self.drop(x) | |
x = self.proj(x * x_mask) | |
return x * x_mask | |
def duration_loss(logw, logw_, lengths): | |
loss = torch.sum((logw - logw_) ** 2) / torch.sum(lengths) | |
return loss |