import os import json import torch from torch.utils.data import Dataset from text import cleaned_text_to_sequence def intersperse(lst, item): result = [item] * (len(lst) * 2 + 1) result[1::2] = lst return result class StableDataset(Dataset): def __init__(self, filelist_path, hop_length): self.filelist_path = filelist_path self.hop_length = hop_length self._load_filelist(filelist_path) def _load_filelist(self, filelist_path): filelist, lengths = [], [] with open(filelist_path, 'r', encoding='utf-8') as f: for line in f: line = json.loads(line.strip()) filelist.append((line['mel_path'], line['phone'])) lengths.append(os.path.getsize(line['audio_path']) // (2 * self.hop_length)) self.filelist = filelist self.lengths = lengths def __len__(self): return len(self.filelist) def __getitem__(self, idx): mel_path, phone = self.filelist[idx] mel = torch.load(mel_path, map_location='cpu') phone = torch.tensor(intersperse(cleaned_text_to_sequence(phone), 0), dtype=torch.long) return mel, phone def collate_fn(batch): texts = [item[1] for item in batch] mels = [item[0] for item in batch] text_lengths = torch.tensor([text.size(-1) for text in texts], dtype=torch.long) mel_lengths = torch.tensor([mel.size(-1) for mel in mels], dtype=torch.long) # pad to the same length texts_padded = torch.nested.to_padded_tensor(torch.nested.nested_tensor(texts), padding=0) mels_padded = torch.nested.to_padded_tensor(torch.nested.nested_tensor(mels), padding=0) return texts_padded, text_lengths, mels_padded, mel_lengths