import streamlit as st from diffusers import DiffusionPipeline import torch from PIL import Image from huggingface_hub import login # Optional: Log in to Hugging Face (if using private models) # login(token="your_huggingface_token") # Streamlit app title st.title("Stable Diffusion Image Generator") # Load the diffusion pipeline (make sure you have access to the model) pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base", torch_dtype=torch.float32) pipe.to("cpu") # Ensure it's using CPU # Get user input (prompt) prompt = st.text_input("What do you want to see?", "A beautiful landscape") # Button to generate image if st.button('Generate Image'): with st.spinner('Generating...'): try: # Generate image image = pipe(prompt).images[0] # Display image in Streamlit st.image(image, caption="Generated Image", use_column_width=True) st.success("Image generated successfully!") except Exception as e: st.error(f"An error occurred: {str(e)}")