samyolo / app_version /v4_app.py
regisLik
deploy1
c9595c6
from flask import Flask, request, render_template, jsonify, send_from_directory
import os
import torch
import numpy as np
import cv2
from segment_anything import sam_model_registry, SamPredictor
from werkzeug.utils import secure_filename
import warnings
# Initialisation de Flask
app = Flask(
__name__,
template_folder='templates', # Chemin des fichiers HTML
static_folder='static' # Chemin des fichiers statiques
)
app.config['UPLOAD_FOLDER'] = os.path.join('static', 'uploads')
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
# Charger le modèle SAM
MODEL_TYPE = "vit_b"
MODEL_PATH = os.path.join('models', 'sam_vit_b_01ec64.pth')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print("Chargement du modèle SAM...")
try:
state_dict = torch.load(MODEL_PATH, map_location="cpu", weights_only=True)
except TypeError:
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=UserWarning)
state_dict = torch.load(MODEL_PATH, map_location="cpu")
# Initialiser et charger le modèle
sam = sam_model_registry[MODEL_TYPE]()
sam.load_state_dict(state_dict, strict=False)
sam.to(device=device)
predictor = SamPredictor(sam)
print("Modèle SAM chargé avec succès!")
# Fonction pour générer une couleur unique pour chaque classe
def get_color_for_class(class_name):
np.random.seed(hash(class_name) % (2**32))
return tuple(np.random.randint(0, 256, size=3).tolist())
@app.route('/', methods=['GET', 'POST'])
def index():
if request.method == 'POST':
file = request.files.get('image')
if not file or not file.filename:
return "Aucun fichier sélectionné", 400
filename = secure_filename(file.filename)
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
file.save(filepath)
return render_template('index.html', uploaded_image=filename)
return render_template('index.html')
@app.route('/uploads/<filename>')
def uploaded_file(filename):
return send_from_directory(app.config['UPLOAD_FOLDER'], filename)
@app.route('/segment', methods=['POST'])
def segment():
data = request.get_json()
image_name = data.get('image_name')
points = data.get('points')
if not image_name or not points:
return jsonify({'success': False, 'error': 'Données manquantes'}), 400
image_path = os.path.join(app.config['UPLOAD_FOLDER'], image_name)
if not os.path.exists(image_path):
return jsonify({'success': False, 'error': 'Image non trouvée'}), 404
# Charger l'image et effectuer la segmentation
image = cv2.imread(image_path)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
predictor.set_image(image_rgb)
annotated_image = image.copy()
for point in points:
x, y = point['x'], point['y']
class_name = point.get('class', 'Unknown')
color = get_color_for_class(class_name) # Couleur unique pour chaque classe
masks, _, _ = predictor.predict(
point_coords=np.array([[x, y]]),
point_labels=np.array([1]),
multimask_output=False
)
annotated_image[masks[0] > 0] = color # Superposer le masque avec la couleur
cv2.putText(annotated_image, class_name, (int(x), int(y)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) # Texte blanc
# Sauvegarder et renvoyer l'image annotée
annotated_filename = f"annotated_{image_name}"
annotated_path = os.path.join(app.config['UPLOAD_FOLDER'], annotated_filename)
cv2.imwrite(annotated_path, annotated_image)
return jsonify({'success': True, 'annotated_image': f"uploads/{annotated_filename}"})
if __name__ == '__main__':
app.run(debug=True, host='0.0.0.0', port=5000)