samyolo / app_version /v6_app.py
regisLik
deploy1
c9595c6
from flask import Flask, request, render_template, jsonify, send_from_directory
import os
import torch
import numpy as np
import cv2
from segment_anything import sam_model_registry, SamPredictor
from werkzeug.utils import secure_filename
import warnings
import json
# Initialisation de Flask
app = Flask(
__name__,
template_folder='templates',
static_folder='static'
)
app.config['UPLOAD_FOLDER'] = os.path.join('static', 'uploads')
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
# Charger le modèle SAM
MODEL_TYPE = "vit_b"
MODEL_PATH = os.path.join('models', 'sam_vit_b_01ec64.pth')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print("Chargement du modèle SAM...")
try:
state_dict = torch.load(MODEL_PATH, map_location="cpu", weights_only=True)
except TypeError:
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=UserWarning)
state_dict = torch.load(MODEL_PATH, map_location="cpu")
# Initialiser et charger le modèle
sam = sam_model_registry[MODEL_TYPE]()
sam.load_state_dict(state_dict, strict=False)
sam.to(device=device)
predictor = SamPredictor(sam)
print("Modèle SAM chargé avec succès!")
# Fonction pour générer une couleur unique pour chaque classe
def get_color_for_class(class_name):
np.random.seed(hash(class_name) % (2**32))
return tuple(np.random.randint(0, 256, size=3).tolist())
# Convertir un masque en bounding box au format YOLOv5
def mask_to_yolo_bbox(mask):
y_indices, x_indices = np.where(mask > 0)
if len(x_indices) == 0 or len(y_indices) == 0:
return None
x_min, x_max = x_indices.min(), x_indices.max()
y_min, y_max = y_indices.min(), y_indices.max()
# YOLOv5 format: x_center, y_center, width, height (normalized)
x_center = (x_min + x_max) / 2
y_center = (y_min + y_max) / 2
width = x_max - x_min
height = y_max - y_min
return x_center, y_center, width, height
@app.route('/', methods=['GET', 'POST'])
def index():
if request.method == 'POST':
files = request.files.getlist('images') # Get multiple files
if not files:
return "Aucun fichier sélectionné", 400
filenames = []
for file in files:
filename = secure_filename(file.filename)
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
file.save(filepath)
filenames.append(filename)
return render_template('index.html', uploaded_images=filenames, all_annotated=False)
# Pour l'affichage des images déjà téléchargées
uploaded_images = os.listdir(app.config['UPLOAD_FOLDER'])
return render_template('index.html', uploaded_images=uploaded_images, all_annotated=False)
@app.route('/uploads/<filename>')
def uploaded_file(filename):
return send_from_directory(app.config['UPLOAD_FOLDER'], filename)
@app.route('/segment', methods=['POST'])
def segment():
data = request.get_json()
print("Données reçues :", data) # Log pour vérifier les données envoyées par le frontend
image_names = data.get('image_names')
points = data.get('points')
if not image_names or not points:
return jsonify({'success': False, 'error': 'Données manquantes'}), 400
output = []
for image_name in image_names:
image_path = os.path.join(app.config['UPLOAD_FOLDER'], image_name)
if not os.path.exists(image_path):
return jsonify({'success': False, 'error': f'Image {image_name} non trouvée'}), 404
# Créer un dossier pour sauvegarder les résultats
output_dir = os.path.join(app.config['UPLOAD_FOLDER'], os.path.splitext(image_name)[0])
os.makedirs(output_dir, exist_ok=True)
# Charger l'image et effectuer la segmentation
image = cv2.imread(image_path)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
predictor.set_image(image_rgb)
annotated_image = image.copy()
# YOLOv5 annotation
yolo_annotations = []
for point in points:
x, y = point['x'], point['y']
class_name = point.get('class', 'Unknown')
class_id = hash(class_name) % 1000 # Générer un ID unique basé sur le nom
color = get_color_for_class(class_name) # Couleur unique pour chaque classe
masks, _, _ = predictor.predict(
point_coords=np.array([[x, y]]),
point_labels=np.array([1]),
multimask_output=False
)
mask = masks[0]
annotated_image[mask > 0] = color # Superposer le masque avec la couleur
# Convertir le masque en bounding box YOLOv5
bbox = mask_to_yolo_bbox(mask)
if bbox:
x_center, y_center, width, height = bbox
# Normaliser les valeurs
x_center /= image.shape[1]
y_center /= image.shape[0]
width /= image.shape[1]
height /= image.shape[0]
yolo_annotations.append(f"{class_id} {x_center:.6f} {y_center:.6f} {width:.6f} {height:.6f}")
# Ajouter le texte de la classe
cv2.putText(annotated_image, class_name, (int(x), int(y)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) # Texte blanc
# Sauvegarder les résultats
annotated_filename = f"annotated_{image_name}"
annotated_path = os.path.join(output_dir, annotated_filename)
cv2.imwrite(annotated_path, annotated_image)
# Sauvegarder les annotations YOLOv5
yolo_path = os.path.join(output_dir, f"{os.path.splitext(image_name)[0]}.txt")
with open(yolo_path, "w") as f:
f.write("\n".join(yolo_annotations))
# Copier l'image originale dans le dossier
original_copy_path = os.path.join(output_dir, image_name)
if not os.path.exists(original_copy_path):
os.rename(image_path, original_copy_path)
# Renvoyer le chemin relatif pour affichage
relative_output_dir = output_dir.replace("static/", "")
output.append({
'success': True,
'image': f"{relative_output_dir}/{annotated_filename}",
'yolo_annotations': f"{relative_output_dir}/{os.path.splitext(image_name)[0]}.txt"
})
return jsonify(output)
if __name__ == '__main__':
app.run(debug=True, host='0.0.0.0', port=5000)