from flask import Flask, request, render_template, jsonify, send_from_directory import os import torch import numpy as np import cv2 from segment_anything import sam_model_registry, SamPredictor from werkzeug.utils import secure_filename import warnings # Initialisation de Flask app = Flask( __name__, template_folder='templates', # Chemin des fichiers HTML static_folder='static' # Chemin des fichiers statiques ) app.config['UPLOAD_FOLDER'] = os.path.join('static', 'uploads') os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True) # Charger le modèle SAM MODEL_TYPE = "vit_b" MODEL_PATH = os.path.join('models', 'sam_vit_b_01ec64.pth') device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print("Chargement du modèle SAM...") try: state_dict = torch.load(MODEL_PATH, map_location="cpu", weights_only=True) except TypeError: with warnings.catch_warnings(): warnings.simplefilter("ignore", category=UserWarning) state_dict = torch.load(MODEL_PATH, map_location="cpu") # Initialiser et charger le modèle sam = sam_model_registry[MODEL_TYPE]() sam.load_state_dict(state_dict, strict=False) sam.to(device=device) predictor = SamPredictor(sam) print("Modèle SAM chargé avec succès!") # Fonction pour générer une couleur unique pour chaque classe def get_color_for_class(class_name): np.random.seed(hash(class_name) % (2**32)) return tuple(np.random.randint(0, 256, size=3).tolist()) @app.route('/', methods=['GET', 'POST']) def index(): if request.method == 'POST': file = request.files.get('image') if not file or not file.filename: return "Aucun fichier sélectionné", 400 filename = secure_filename(file.filename) filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename) file.save(filepath) return render_template('index.html', uploaded_image=filename) return render_template('index.html') @app.route('/uploads/') def uploaded_file(filename): return send_from_directory(app.config['UPLOAD_FOLDER'], filename) @app.route('/segment', methods=['POST']) def segment(): data = request.get_json() image_name = data.get('image_name') points = data.get('points') if not image_name or not points: return jsonify({'success': False, 'error': 'Données manquantes'}), 400 image_path = os.path.join(app.config['UPLOAD_FOLDER'], image_name) if not os.path.exists(image_path): return jsonify({'success': False, 'error': 'Image non trouvée'}), 404 # Charger l'image et effectuer la segmentation image = cv2.imread(image_path) image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) predictor.set_image(image_rgb) annotated_image = image.copy() for point in points: x, y = point['x'], point['y'] class_name = point.get('class', 'Unknown') color = get_color_for_class(class_name) # Couleur unique pour chaque classe masks, _, _ = predictor.predict( point_coords=np.array([[x, y]]), point_labels=np.array([1]), multimask_output=False ) annotated_image[masks[0] > 0] = color # Superposer le masque avec la couleur cv2.putText(annotated_image, class_name, (int(x), int(y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) # Texte blanc # Sauvegarder et renvoyer l'image annotée annotated_filename = f"annotated_{image_name}" annotated_path = os.path.join(app.config['UPLOAD_FOLDER'], annotated_filename) cv2.imwrite(annotated_path, annotated_image) return jsonify({'success': True, 'annotated_image': f"uploads/{annotated_filename}"}) if __name__ == '__main__': app.run(debug=True, host='0.0.0.0', port=5000)