from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer from PIL import Image import requests import torch from threading import Thread import gradio as gr from gradio import FileData import time import spaces ckpt = "Kendamarron/Llama-3.2-11B-Vision-Instruct-Swallow-8B-Merge" model = MllamaForConditionalGeneration.from_pretrained(ckpt, torch_dtype=torch.bfloat16).to("cuda") processor = AutoProcessor.from_pretrained(ckpt) @spaces.GPU def bot_streaming(message, history, max_new_tokens=250): txt = message["text"] ext_buffer = f"{txt}" messages= [] images = [] for i, msg in enumerate(history): if isinstance(msg[0], tuple): messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]}) messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]}) images.append(Image.open(msg[0][0]).convert("RGB")) elif isinstance(history[i-1], tuple) and isinstance(msg[0], str): # messages are already handled pass elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): # text only turn messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]}) messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]}) # add current message if len(message["files"]) == 1: if isinstance(message["files"][0], str): # examples image = Image.open(message["files"][0]).convert("RGB") else: # regular input image = Image.open(message["files"][0]["path"]).convert("RGB") images.append(image) messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]}) else: messages.append({"role": "user", "content": [{"type": "text", "text": txt}]}) texts = processor.apply_chat_template(messages, add_generation_prompt=True) if images == []: inputs = processor(text=texts, return_tensors="pt").to("cuda") else: inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda") streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens) generated_text = "" thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text generated_text_without_prompt = buffer time.sleep(0.01) yield buffer demo = gr.ChatInterface(fn=bot_streaming, title="Multimodal Llama", examples=[ [{"text": "これはどの時代のものですか?時代について詳しく教えてください。", "files":["./examples/rococo.jpg"]}, 200], [{"text": "この図によると、干ばつはどこで起こるのでしょうか?", "files":["./examples/weather_events.png"]}, 250], [{"text": "このチェーンから白猫を外すとどうなるのか?", "files":["./examples/ai2d_test.jpg"]}, 250], [{"text": "請求書発行日から支払期日までの期間は?短く簡潔に。", "files":["./examples/invoice.png"]}, 250], [{"text": "このモニュメントはどこにありますか?また、その周辺でお勧めの場所を教えてください。", "files":["./examples/wat_arun.jpg"]}, 250], ], textbox=gr.MultimodalTextbox(), additional_inputs = [gr.Slider( minimum=10, maximum=500, value=250, step=10, label="Maximum number of new tokens to generate", ) ], cache_examples=False, description="[Kendamarron/Llama-3.2-11B-Vision-Instruct-Swallow-8B-Merge](https://huggingface.co/Kendamarron/Llama-3.2-11B-Vision-Instruct-Swallow-8B-Merge)のデモ", stop_btn="Stop Generation", fill_height=True, multimodal=True) demo.launch(debug=True)