Spaces:
Running
Running
File size: 3,296 Bytes
1565811 5911164 1565811 33e6cd6 5911164 44922ab 1565811 6ab882a 1565811 44922ab 1565811 6ab882a 1565811 6ab882a 1565811 5911164 1565811 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import os
os.system('wget "https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/RetinaFace-R50.pth?OSSAccessKeyId=LTAI4G6bfnyW4TA4wFUXTYBe&Expires=1961116085&Signature=GlUNW6%2B8FxvxWmE9jKIZYOOciKQ%3D" -O weights/RetinaFace-R50.pth')
os.system('wget "https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-BFR-512.pth?OSSAccessKeyId=LTAI4G6bfnyW4TA4wFUXTYBe&Expires=1961116208&Signature=hBgvVvKVSNGeXqT8glG%2Bd2t2OKc%3D" -O weights/GPEN-512.pth')
os.system('wget "https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-Colorization-1024.pth?OSSAccessKeyId=LTAI4G6bfnyW4TA4wFUXTYBe&Expires=1961116315&Signature=9tPavW2h%2F1LhIKiXj73sTQoWqcc%3D" -O weights/GPEN-1024-Color.pth ')
os.system('wget "https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/realesrnet_x2.pth?OSSAccessKeyId=LTAI4G6bfnyW4TA4wFUXTYBe&Expires=1962694780&Signature=lI%2FolhA%2FyigiTRvoDIVbtMIyhjI%3D" -O weights/realesrnet_x2.pth ')
import gradio as gr
'''
@paper: GAN Prior Embedded Network for Blind Face Restoration in the Wild (CVPR2021)
@author: yangxy (yangtao9009@gmail.com)
'''
import os
import cv2
from face_enhancement import FaceEnhancement
from face_colorization import FaceColorization
def inference(file, mode):
if mode == "enhance":
model = {'name':'GPEN-512', 'size':512}
im = cv2.imread(file, cv2.IMREAD_COLOR)
im = cv2.resize(im, (0,0), fx=2, fy=2)
faceenhancer = FaceEnhancement(size=model['size'], model=model['name'], channel_multiplier=2, device='cpu')
img, orig_faces, enhanced_faces = faceenhancer.process(im)
cv2.imwrite(os.path.join("output.png"), img)
return os.path.join("output.png")
else:
model = {'name':'GPEN-1024-Color', 'size':1024}
grayf = cv2.imread(file, cv2.IMREAD_GRAYSCALE)
grayf = cv2.cvtColor(grayf, cv2.COLOR_GRAY2BGR) # channel: 1->3
facecolorizer = FaceColorization(size=model['size'], model=model['name'], channel_multiplier=2, device='cpu')
colorf = facecolorizer.process(grayf)
colorf = cv2.resize(colorf, (grayf.shape[1], grayf.shape[0]))
cv2.imwrite(os.path.join("output.png"), colorf)
return os.path.join("output.png")
title = "GPEN"
description = "Gradio demo for GAN Prior Embedded Network for Blind Face Restoration in the Wild. This version of gradio demo includes face colorization from GPEN. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2105.06070' target='_blank'>GAN Prior Embedded Network for Blind Face Restoration in the Wild</a> | <a href='https://github.com/yangxy/GPEN' target='_blank'>Github Repo</a></p><center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_GPEN' alt='visitor badge'></center>"
gr.Interface(
inference,
[gr.inputs.Image(type="filepath", label="Input"),gr.inputs.Radio(["enhance","colorize"], type="value", default="enhance", label="Type")],
gr.outputs.Image(type="file", label="Output"),
title=title,
description=description,
article=article,
examples=[
['enhance.png'],
['color.png']
],
enable_queue=True
).launch() |