File size: 3,296 Bytes
1565811
 
 
 
 
5911164
1565811
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33e6cd6
5911164
44922ab
1565811
6ab882a
 
1565811
 
 
 
44922ab
1565811
 
 
6ab882a
 
1565811
 
 
 
 
 
 
 
 
6ab882a
 
1565811
 
 
 
5911164
 
1565811
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import os

os.system('wget "https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/RetinaFace-R50.pth?OSSAccessKeyId=LTAI4G6bfnyW4TA4wFUXTYBe&Expires=1961116085&Signature=GlUNW6%2B8FxvxWmE9jKIZYOOciKQ%3D" -O weights/RetinaFace-R50.pth')
os.system('wget "https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-BFR-512.pth?OSSAccessKeyId=LTAI4G6bfnyW4TA4wFUXTYBe&Expires=1961116208&Signature=hBgvVvKVSNGeXqT8glG%2Bd2t2OKc%3D" -O weights/GPEN-512.pth')
os.system('wget "https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-Colorization-1024.pth?OSSAccessKeyId=LTAI4G6bfnyW4TA4wFUXTYBe&Expires=1961116315&Signature=9tPavW2h%2F1LhIKiXj73sTQoWqcc%3D" -O weights/GPEN-1024-Color.pth ')
os.system('wget "https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/realesrnet_x2.pth?OSSAccessKeyId=LTAI4G6bfnyW4TA4wFUXTYBe&Expires=1962694780&Signature=lI%2FolhA%2FyigiTRvoDIVbtMIyhjI%3D" -O weights/realesrnet_x2.pth ')

import gradio as gr

'''
@paper: GAN Prior Embedded Network for Blind Face Restoration in the Wild (CVPR2021)
@author: yangxy (yangtao9009@gmail.com)
'''
import os
import cv2
from face_enhancement import FaceEnhancement 
from face_colorization import FaceColorization 
  

def inference(file, mode):

    if mode == "enhance":
        model = {'name':'GPEN-512', 'size':512}
        im = cv2.imread(file, cv2.IMREAD_COLOR)
        im = cv2.resize(im, (0,0), fx=2, fy=2)
        faceenhancer = FaceEnhancement(size=model['size'], model=model['name'], channel_multiplier=2, device='cpu')
        img, orig_faces, enhanced_faces = faceenhancer.process(im)
        cv2.imwrite(os.path.join("output.png"), img)
        return os.path.join("output.png")
    else:
        model = {'name':'GPEN-1024-Color', 'size':1024}
        grayf = cv2.imread(file, cv2.IMREAD_GRAYSCALE)
        grayf = cv2.cvtColor(grayf, cv2.COLOR_GRAY2BGR) # channel: 1->3
        facecolorizer = FaceColorization(size=model['size'], model=model['name'], channel_multiplier=2, device='cpu')
        colorf = facecolorizer.process(grayf)

        colorf = cv2.resize(colorf, (grayf.shape[1], grayf.shape[0]))
        cv2.imwrite(os.path.join("output.png"), colorf)
        return os.path.join("output.png")
        
title = "GPEN"
description = "Gradio demo for GAN Prior Embedded Network for Blind Face Restoration in the Wild. This version of gradio demo includes face colorization from GPEN. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."

article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2105.06070' target='_blank'>GAN Prior Embedded Network for Blind Face Restoration in the Wild</a> | <a href='https://github.com/yangxy/GPEN' target='_blank'>Github Repo</a></p><center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_GPEN' alt='visitor badge'></center>"


gr.Interface(
    inference, 
    [gr.inputs.Image(type="filepath", label="Input"),gr.inputs.Radio(["enhance","colorize"], type="value", default="enhance", label="Type")], 
    gr.outputs.Image(type="file", label="Output"),
    title=title,
    description=description,
    article=article,
    examples=[
    ['enhance.png'],
    ['color.png']
    ],
    enable_queue=True
    ).launch()