File size: 2,984 Bytes
1565811
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import os
import platform

import torch
from torch import nn
import torch.nn.functional as F
from torch.autograd import Function
from torch.utils.cpp_extension import load, _import_module_from_library

# if running GPEN without cuda, please comment line 11-19
if platform.system() == 'Linux' and torch.cuda.is_available():
    module_path = os.path.dirname(__file__)
    fused = load(
        'fused',
        sources=[
            os.path.join(module_path, 'fused_bias_act.cpp'),
            os.path.join(module_path, 'fused_bias_act_kernel.cu'),
        ],
    )


#fused = _import_module_from_library('fused', '/tmp/torch_extensions/fused', True)


class FusedLeakyReLUFunctionBackward(Function):
    @staticmethod
    def forward(ctx, grad_output, out, negative_slope, scale):
        ctx.save_for_backward(out)
        ctx.negative_slope = negative_slope
        ctx.scale = scale

        empty = grad_output.new_empty(0)

        grad_input = fused.fused_bias_act(
            grad_output, empty, out, 3, 1, negative_slope, scale
        )

        dim = [0]

        if grad_input.ndim > 2:
            dim += list(range(2, grad_input.ndim))

        grad_bias = grad_input.sum(dim).detach()

        return grad_input, grad_bias

    @staticmethod
    def backward(ctx, gradgrad_input, gradgrad_bias):
        out, = ctx.saved_tensors
        gradgrad_out = fused.fused_bias_act(
            gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale
        )

        return gradgrad_out, None, None, None


class FusedLeakyReLUFunction(Function):
    @staticmethod
    def forward(ctx, input, bias, negative_slope, scale):
        empty = input.new_empty(0)
        out = fused.fused_bias_act(input, bias, empty, 3, 0, negative_slope, scale)
        ctx.save_for_backward(out)
        ctx.negative_slope = negative_slope
        ctx.scale = scale

        return out

    @staticmethod
    def backward(ctx, grad_output):
        out, = ctx.saved_tensors

        grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(
            grad_output, out, ctx.negative_slope, ctx.scale
        )

        return grad_input, grad_bias, None, None


class FusedLeakyReLU(nn.Module):
    def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5, device='cpu'):
        super().__init__()

        self.bias = nn.Parameter(torch.zeros(channel))
        self.negative_slope = negative_slope
        self.scale = scale
        self.device = device

    def forward(self, input):
        return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale, self.device)


def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5, device='cpu'):
    if platform.system() == 'Linux' and torch.cuda.is_available() and device != 'cpu':
        return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
    else:
        return scale * F.leaky_relu(input + bias.view((1, -1)+(1,)*(len(input.shape)-2)), negative_slope=negative_slope)