Spaces:
Running
Running
File size: 2,360 Bytes
1565811 172e426 1565811 0acdd4e 1565811 172e426 1565811 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
'''
@paper: GAN Prior Embedded Network for Blind Face Restoration in the Wild (CVPR2021)
@author: yangxy (yangtao9009@gmail.com)
'''
import torch
import os
import cv2
import glob
import numpy as np
from torch import nn
import torch.nn.functional as F
from torchvision import transforms, utils
from model import FullGenerator, FullGenerator_SR
class FaceGAN(object):
def __init__(self, base_dir='./', size=512, out_size=None, model=None, channel_multiplier=2, narrow=1, key=None, is_norm=True, device='cuda'):
self.mfile = os.path.join(base_dir, 'weights', model+'.pth')
self.n_mlp = 8
self.device = device
self.is_norm = is_norm
self.in_resolution = size
self.out_resolution = size if out_size == None else out_size
self.key = key
self.load_model(channel_multiplier, narrow)
def load_model(self, channel_multiplier=2, narrow=1):
if self.in_resolution == self.out_resolution:
self.model = FullGenerator(self.in_resolution, 512, self.n_mlp, channel_multiplier, narrow=narrow, device=self.device)
else:
self.model = FullGenerator_SR(self.in_resolution, self.out_resolution, 512, self.n_mlp, channel_multiplier, narrow=narrow, device=self.device)
pretrained_dict = torch.load(self.mfile, map_location=torch.device('cpu'))
if self.key is not None: pretrained_dict = pretrained_dict[self.key]
self.model.load_state_dict(pretrained_dict)
self.model.to(self.device)
self.model.eval()
def process(self, img):
img = cv2.resize(img, (self.in_resolution, self.in_resolution))
img_t = self.img2tensor(img)
with torch.no_grad():
out, __ = self.model(img_t)
del img_t
out = self.tensor2img(out)
return out
def img2tensor(self, img):
img_t = torch.from_numpy(img).to(self.device)/255.
if self.is_norm:
img_t = (img_t - 0.5) / 0.5
img_t = img_t.permute(2, 0, 1).unsqueeze(0).flip(1) # BGR->RGB
return img_t
def tensor2img(self, img_t, pmax=255.0, imtype=np.uint8):
if self.is_norm:
img_t = img_t * 0.5 + 0.5
img_t = img_t.squeeze(0).permute(1, 2, 0).flip(2) # RGB->BGR
img_np = np.clip(img_t.float().cpu().numpy(), 0, 1) * pmax
return img_np.astype(imtype) |